Metamath Proof Explorer


Theorem ballotlemelo

Description: Elementhood in O . (Contributed by Thierry Arnoux, 17-Apr-2017)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O = c 𝒫 1 M + N | c = M
Assertion ballotlemelo C O C 1 M + N C = M

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O = c 𝒫 1 M + N | c = M
4 fveqeq2 d = C d = M C = M
5 fveqeq2 c = d c = M d = M
6 5 cbvrabv c 𝒫 1 M + N | c = M = d 𝒫 1 M + N | d = M
7 3 6 eqtri O = d 𝒫 1 M + N | d = M
8 4 7 elrab2 C O C 𝒫 1 M + N C = M
9 ovex 1 M + N V
10 9 elpw2 C 𝒫 1 M + N C 1 M + N
11 10 anbi1i C 𝒫 1 M + N C = M C 1 M + N C = M
12 8 11 bitri C O C 1 M + N C = M