Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Probability
Bertrand's Ballot Problem
ballotlemelo
Next ⟩
ballotlem2
Metamath Proof Explorer
Ascii
Unicode
Theorem
ballotlemelo
Description:
Elementhood in
O
.
(Contributed by
Thierry Arnoux
, 17-Apr-2017)
Ref
Expression
Hypotheses
ballotth.m
⊢
M
∈
ℕ
ballotth.n
⊢
N
∈
ℕ
ballotth.o
⊢
O
=
c
∈
𝒫
1
…
M
+
N
|
c
=
M
Assertion
ballotlemelo
⊢
C
∈
O
↔
C
⊆
1
…
M
+
N
∧
C
=
M
Proof
Step
Hyp
Ref
Expression
1
ballotth.m
⊢
M
∈
ℕ
2
ballotth.n
⊢
N
∈
ℕ
3
ballotth.o
⊢
O
=
c
∈
𝒫
1
…
M
+
N
|
c
=
M
4
fveqeq2
⊢
d
=
C
→
d
=
M
↔
C
=
M
5
fveqeq2
⊢
c
=
d
→
c
=
M
↔
d
=
M
6
5
cbvrabv
⊢
c
∈
𝒫
1
…
M
+
N
|
c
=
M
=
d
∈
𝒫
1
…
M
+
N
|
d
=
M
7
3
6
eqtri
⊢
O
=
d
∈
𝒫
1
…
M
+
N
|
d
=
M
8
4
7
elrab2
⊢
C
∈
O
↔
C
∈
𝒫
1
…
M
+
N
∧
C
=
M
9
ovex
⊢
1
…
M
+
N
∈
V
10
9
elpw2
⊢
C
∈
𝒫
1
…
M
+
N
↔
C
⊆
1
…
M
+
N
11
10
anbi1i
⊢
C
∈
𝒫
1
…
M
+
N
∧
C
=
M
↔
C
⊆
1
…
M
+
N
∧
C
=
M
12
8
11
bitri
⊢
C
∈
O
↔
C
⊆
1
…
M
+
N
∧
C
=
M