Metamath Proof Explorer


Theorem ballotlemfc0

Description: F takes value 0 between negative and positive values. (Contributed by Thierry Arnoux, 24-Nov-2016)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O = c 𝒫 1 M + N | c = M
ballotth.p P = x 𝒫 O x O
ballotth.f F = c O i 1 i c 1 i c
ballotlemfp1.c φ C O
ballotlemfp1.j φ J
ballotlemfc0.3 φ i 1 J F C i 0
ballotlemfc0.4 φ 0 < F C J
Assertion ballotlemfc0 φ k 1 J F C k = 0

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O = c 𝒫 1 M + N | c = M
4 ballotth.p P = x 𝒫 O x O
5 ballotth.f F = c O i 1 i c 1 i c
6 ballotlemfp1.c φ C O
7 ballotlemfp1.j φ J
8 ballotlemfc0.3 φ i 1 J F C i 0
9 ballotlemfc0.4 φ 0 < F C J
10 fveq2 i = k F C i = F C k
11 10 breq1d i = k F C i 0 F C k 0
12 11 elrab k i 1 J | F C i 0 k 1 J F C k 0
13 12 anbi1i k i 1 J | F C i 0 j i 1 J | F C i 0 j k k 1 J F C k 0 j i 1 J | F C i 0 j k
14 simprlr φ k 1 J F C k 0 j i 1 J | F C i 0 j k F C k 0
15 simprl φ k 1 J F C k 0 k 1 J
16 15 adantrr φ k 1 J F C k 0 j i 1 J | F C i 0 j k k 1 J
17 fzssuz 1 J 1
18 uzssz 1
19 17 18 sstri 1 J
20 zssre
21 19 20 sstri 1 J
22 21 sseli k 1 J k
23 22 ltp1d k 1 J k < k + 1
24 1red k 1 J 1
25 22 24 readdcld k 1 J k + 1
26 22 25 ltnled k 1 J k < k + 1 ¬ k + 1 k
27 23 26 mpbid k 1 J ¬ k + 1 k
28 16 27 syl φ k 1 J F C k 0 j i 1 J | F C i 0 j k ¬ k + 1 k
29 simprr φ k 1 J F C k 0 j i 1 J | F C i 0 j k j i 1 J | F C i 0 j k
30 9 adantr φ k = J 0 < F C J
31 simpr φ k = J k = J
32 31 fveq2d φ k = J F C k = F C J
33 32 breq2d φ k = J 0 < F C k 0 < F C J
34 elnnuz J J 1
35 7 34 sylib φ J 1
36 eluzfz2 J 1 J 1 J
37 35 36 syl φ J 1 J
38 eleq1 k = J k 1 J J 1 J
39 37 38 syl5ibrcom φ k = J k 1 J
40 39 anc2li φ k = J φ k 1 J
41 1eluzge0 1 0
42 fzss1 1 0 1 J 0 J
43 42 sseld 1 0 k 1 J k 0 J
44 41 43 ax-mp k 1 J k 0 J
45 0red φ k 0 J 0
46 6 adantr φ k 0 J C O
47 elfzelz k 0 J k
48 47 adantl φ k 0 J k
49 1 2 3 4 5 46 48 ballotlemfelz φ k 0 J F C k
50 49 zred φ k 0 J F C k
51 45 50 ltnled φ k 0 J 0 < F C k ¬ F C k 0
52 44 51 sylan2 φ k 1 J 0 < F C k ¬ F C k 0
53 40 52 syl6 φ k = J 0 < F C k ¬ F C k 0
54 53 imp φ k = J 0 < F C k ¬ F C k 0
55 33 54 bitr3d φ k = J 0 < F C J ¬ F C k 0
56 30 55 mpbid φ k = J ¬ F C k 0
57 56 ex φ k = J ¬ F C k 0
58 57 con2d φ F C k 0 ¬ k = J
59 nn1m1nn J J = 1 J 1
60 7 59 syl φ J = 1 J 1
61 8 adantr φ J = 1 i 1 J F C i 0
62 oveq1 J = 1 J J = 1 J
63 62 adantl φ J = 1 J J = 1 J
64 7 nnzd φ J
65 fzsn J J J = J
66 64 65 syl φ J J = J
67 66 adantr φ J = 1 J J = J
68 63 67 eqtr3d φ J = 1 1 J = J
69 61 68 rexeqtrdv φ J = 1 i J F C i 0
70 fveq2 i = J F C i = F C J
71 70 breq1d i = J F C i 0 F C J 0
72 71 rexsng J i J F C i 0 F C J 0
73 7 72 syl φ i J F C i 0 F C J 0
74 73 adantr φ J = 1 i J F C i 0 F C J 0
75 69 74 mpbid φ J = 1 F C J 0
76 9 adantr φ J = 1 0 < F C J
77 0red φ 0
78 1 2 3 4 5 6 64 ballotlemfelz φ F C J
79 78 zred φ F C J
80 77 79 ltnled φ 0 < F C J ¬ F C J 0
81 80 adantr φ J = 1 0 < F C J ¬ F C J 0
82 76 81 mpbid φ J = 1 ¬ F C J 0
83 75 82 pm2.65da φ ¬ J = 1
84 biortn ¬ J = 1 J 1 ¬ ¬ J = 1 J 1
85 83 84 syl φ J 1 ¬ ¬ J = 1 J 1
86 notnotb J = 1 ¬ ¬ J = 1
87 86 orbi1i J = 1 J 1 ¬ ¬ J = 1 J 1
88 85 87 bitr4di φ J 1 J = 1 J 1
89 60 88 mpbird φ J 1
90 elnnuz J 1 J 1 1
91 89 90 sylib φ J 1 1
92 elfzp1 J 1 1 k 1 J - 1 + 1 k 1 J 1 k = J - 1 + 1
93 91 92 syl φ k 1 J - 1 + 1 k 1 J 1 k = J - 1 + 1
94 7 nncnd φ J
95 1cnd φ 1
96 94 95 npcand φ J - 1 + 1 = J
97 96 oveq2d φ 1 J - 1 + 1 = 1 J
98 97 eleq2d φ k 1 J - 1 + 1 k 1 J
99 96 eqeq2d φ k = J - 1 + 1 k = J
100 99 orbi2d φ k 1 J 1 k = J - 1 + 1 k 1 J 1 k = J
101 93 98 100 3bitr3d φ k 1 J k 1 J 1 k = J
102 orcom k 1 J 1 k = J k = J k 1 J 1
103 101 102 bitrdi φ k 1 J k = J k 1 J 1
104 103 biimpd φ k 1 J k = J k 1 J 1
105 pm5.6 k 1 J ¬ k = J k 1 J 1 k 1 J k = J k 1 J 1
106 104 105 sylibr φ k 1 J ¬ k = J k 1 J 1
107 89 nnzd φ J 1
108 1z 1
109 107 108 jctil φ 1 J 1
110 elfzelz k 1 J 1 k
111 110 108 jctir k 1 J 1 k 1
112 fzaddel 1 J 1 k 1 k 1 J 1 k + 1 1 + 1 J - 1 + 1
113 109 111 112 syl2an φ k 1 J 1 k 1 J 1 k + 1 1 + 1 J - 1 + 1
114 113 biimp3a φ k 1 J 1 k 1 J 1 k + 1 1 + 1 J - 1 + 1
115 114 3anidm23 φ k 1 J 1 k + 1 1 + 1 J - 1 + 1
116 1p1e2 1 + 1 = 2
117 116 a1i φ 1 + 1 = 2
118 117 96 oveq12d φ 1 + 1 J - 1 + 1 = 2 J
119 118 eleq2d φ k + 1 1 + 1 J - 1 + 1 k + 1 2 J
120 2eluzge1 2 1
121 fzss1 2 1 2 J 1 J
122 120 121 ax-mp 2 J 1 J
123 122 sseli k + 1 2 J k + 1 1 J
124 119 123 biimtrdi φ k + 1 1 + 1 J - 1 + 1 k + 1 1 J
125 124 adantr φ k 1 J 1 k + 1 1 + 1 J - 1 + 1 k + 1 1 J
126 115 125 mpd φ k 1 J 1 k + 1 1 J
127 126 ex φ k 1 J 1 k + 1 1 J
128 106 127 syld φ k 1 J ¬ k = J k + 1 1 J
129 58 128 sylan2d φ k 1 J F C k 0 k + 1 1 J
130 129 imp φ k 1 J F C k 0 k + 1 1 J
131 130 adantrr φ k 1 J F C k 0 j i 1 J | F C i 0 j k k + 1 1 J
132 fveq2 i = k + 1 F C i = F C k + 1
133 132 breq1d i = k + 1 F C i 0 F C k + 1 0
134 133 elrab k + 1 i 1 J | F C i 0 k + 1 1 J F C k + 1 0
135 breq1 j = k + 1 j k k + 1 k
136 135 rspccva j i 1 J | F C i 0 j k k + 1 i 1 J | F C i 0 k + 1 k
137 134 136 sylan2br j i 1 J | F C i 0 j k k + 1 1 J F C k + 1 0 k + 1 k
138 137 expr j i 1 J | F C i 0 j k k + 1 1 J F C k + 1 0 k + 1 k
139 138 con3d j i 1 J | F C i 0 j k k + 1 1 J ¬ k + 1 k ¬ F C k + 1 0
140 29 131 139 syl2anc φ k 1 J F C k 0 j i 1 J | F C i 0 j k ¬ k + 1 k ¬ F C k + 1 0
141 28 140 mpd φ k 1 J F C k 0 j i 1 J | F C i 0 j k ¬ F C k + 1 0
142 simplrr φ k 1 J F C k 0 j i 1 J | F C i 0 j k ¬ k + 1 C j i 1 J | F C i 0 j k
143 131 adantr φ k 1 J F C k 0 j i 1 J | F C i 0 j k ¬ k + 1 C k + 1 1 J
144 simpll φ k 1 J F C k 0 ¬ k + 1 C φ
145 130 adantr φ k 1 J F C k 0 ¬ k + 1 C k + 1 1 J
146 42 sseld 1 0 k + 1 1 J k + 1 0 J
147 41 145 146 mpsyl φ k 1 J F C k 0 ¬ k + 1 C k + 1 0 J
148 6 adantr φ k + 1 0 J C O
149 elfzelz k + 1 0 J k + 1
150 149 adantl φ k + 1 0 J k + 1
151 1 2 3 4 5 148 150 ballotlemfelz φ k + 1 0 J F C k + 1
152 151 zred φ k + 1 0 J F C k + 1
153 144 147 152 syl2anc φ k 1 J F C k 0 ¬ k + 1 C F C k + 1
154 0red φ k 1 J F C k 0 ¬ k + 1 C 0
155 simplrr φ k 1 J F C k 0 ¬ k + 1 C F C k 0
156 15 adantr φ k 1 J F C k 0 ¬ k + 1 C k 1 J
157 156 44 syl φ k 1 J F C k 0 ¬ k + 1 C k 0 J
158 129 imdistani φ k 1 J F C k 0 φ k + 1 1 J
159 6 adantr φ k + 1 1 J C O
160 elfznn k + 1 1 J k + 1
161 160 adantl φ k + 1 1 J k + 1
162 1 2 3 4 5 159 161 ballotlemfp1 φ k + 1 1 J ¬ k + 1 C F C k + 1 = F C k + 1 - 1 1 k + 1 C F C k + 1 = F C k + 1 - 1 + 1
163 162 simpld φ k + 1 1 J ¬ k + 1 C F C k + 1 = F C k + 1 - 1 1
164 163 imp φ k + 1 1 J ¬ k + 1 C F C k + 1 = F C k + 1 - 1 1
165 158 164 sylan φ k 1 J F C k 0 ¬ k + 1 C F C k + 1 = F C k + 1 - 1 1
166 elfzelz k 1 J k
167 166 zcnd k 1 J k
168 1cnd k 1 J 1
169 167 168 pncand k 1 J k + 1 - 1 = k
170 169 fveq2d k 1 J F C k + 1 - 1 = F C k
171 170 oveq1d k 1 J F C k + 1 - 1 1 = F C k 1
172 171 eqeq2d k 1 J F C k + 1 = F C k + 1 - 1 1 F C k + 1 = F C k 1
173 156 172 syl φ k 1 J F C k 0 ¬ k + 1 C F C k + 1 = F C k + 1 - 1 1 F C k + 1 = F C k 1
174 165 173 mpbid φ k 1 J F C k 0 ¬ k + 1 C F C k + 1 = F C k 1
175 0z 0
176 zlem1lt F C k 0 F C k 0 F C k 1 < 0
177 49 175 176 sylancl φ k 0 J F C k 0 F C k 1 < 0
178 177 adantr φ k 0 J F C k + 1 = F C k 1 F C k 0 F C k 1 < 0
179 breq1 F C k + 1 = F C k 1 F C k + 1 < 0 F C k 1 < 0
180 179 adantl φ k 0 J F C k + 1 = F C k 1 F C k + 1 < 0 F C k 1 < 0
181 178 180 bitr4d φ k 0 J F C k + 1 = F C k 1 F C k 0 F C k + 1 < 0
182 144 157 174 181 syl21anc φ k 1 J F C k 0 ¬ k + 1 C F C k 0 F C k + 1 < 0
183 155 182 mpbid φ k 1 J F C k 0 ¬ k + 1 C F C k + 1 < 0
184 153 154 183 ltled φ k 1 J F C k 0 ¬ k + 1 C F C k + 1 0
185 184 adantlrr φ k 1 J F C k 0 j i 1 J | F C i 0 j k ¬ k + 1 C F C k + 1 0
186 142 143 185 137 syl12anc φ k 1 J F C k 0 j i 1 J | F C i 0 j k ¬ k + 1 C k + 1 k
187 28 adantr φ k 1 J F C k 0 j i 1 J | F C i 0 j k ¬ k + 1 C ¬ k + 1 k
188 186 187 condan φ k 1 J F C k 0 j i 1 J | F C i 0 j k k + 1 C
189 162 simprd φ k + 1 1 J k + 1 C F C k + 1 = F C k + 1 - 1 + 1
190 189 imp φ k + 1 1 J k + 1 C F C k + 1 = F C k + 1 - 1 + 1
191 158 190 sylan φ k 1 J F C k 0 k + 1 C F C k + 1 = F C k + 1 - 1 + 1
192 15 adantr φ k 1 J F C k 0 k + 1 C k 1 J
193 170 oveq1d k 1 J F C k + 1 - 1 + 1 = F C k + 1
194 193 eqeq2d k 1 J F C k + 1 = F C k + 1 - 1 + 1 F C k + 1 = F C k + 1
195 192 194 syl φ k 1 J F C k 0 k + 1 C F C k + 1 = F C k + 1 - 1 + 1 F C k + 1 = F C k + 1
196 191 195 mpbid φ k 1 J F C k 0 k + 1 C F C k + 1 = F C k + 1
197 196 adantlrr φ k 1 J F C k 0 j i 1 J | F C i 0 j k k + 1 C F C k + 1 = F C k + 1
198 188 197 mpdan φ k 1 J F C k 0 j i 1 J | F C i 0 j k F C k + 1 = F C k + 1
199 breq1 F C k + 1 = F C k + 1 F C k + 1 0 F C k + 1 0
200 199 notbid F C k + 1 = F C k + 1 ¬ F C k + 1 0 ¬ F C k + 1 0
201 198 200 syl φ k 1 J F C k 0 j i 1 J | F C i 0 j k ¬ F C k + 1 0 ¬ F C k + 1 0
202 141 201 mpbid φ k 1 J F C k 0 j i 1 J | F C i 0 j k ¬ F C k + 1 0
203 15 44 syl φ k 1 J F C k 0 k 0 J
204 203 49 syldan φ k 1 J F C k 0 F C k
205 204 adantrr φ k 1 J F C k 0 j i 1 J | F C i 0 j k F C k
206 zleltp1 0 F C k 0 F C k 0 < F C k + 1
207 175 206 mpan F C k 0 F C k 0 < F C k + 1
208 0red F C k 0
209 zre F C k F C k
210 1red F C k 1
211 209 210 readdcld F C k F C k + 1
212 208 211 ltnled F C k 0 < F C k + 1 ¬ F C k + 1 0
213 207 212 bitrd F C k 0 F C k ¬ F C k + 1 0
214 205 213 syl φ k 1 J F C k 0 j i 1 J | F C i 0 j k 0 F C k ¬ F C k + 1 0
215 202 214 mpbird φ k 1 J F C k 0 j i 1 J | F C i 0 j k 0 F C k
216 205 zred φ k 1 J F C k 0 j i 1 J | F C i 0 j k F C k
217 0red φ k 1 J F C k 0 j i 1 J | F C i 0 j k 0
218 216 217 letri3d φ k 1 J F C k 0 j i 1 J | F C i 0 j k F C k = 0 F C k 0 0 F C k
219 14 215 218 mpbir2and φ k 1 J F C k 0 j i 1 J | F C i 0 j k F C k = 0
220 13 219 sylan2b φ k i 1 J | F C i 0 j i 1 J | F C i 0 j k F C k = 0
221 ssrab2 i 1 J | F C i 0 1 J
222 221 21 sstri i 1 J | F C i 0
223 222 a1i φ i 1 J | F C i 0
224 fzfi 1 J Fin
225 ssfi 1 J Fin i 1 J | F C i 0 1 J i 1 J | F C i 0 Fin
226 224 221 225 mp2an i 1 J | F C i 0 Fin
227 226 a1i φ i 1 J | F C i 0 Fin
228 rabn0 i 1 J | F C i 0 i 1 J F C i 0
229 8 228 sylibr φ i 1 J | F C i 0
230 fimaxre i 1 J | F C i 0 i 1 J | F C i 0 Fin i 1 J | F C i 0 k i 1 J | F C i 0 j i 1 J | F C i 0 j k
231 223 227 229 230 syl3anc φ k i 1 J | F C i 0 j i 1 J | F C i 0 j k
232 220 231 reximddv φ k i 1 J | F C i 0 F C k = 0
233 elrabi k i 1 J | F C i 0 k 1 J
234 233 anim1i k i 1 J | F C i 0 F C k = 0 k 1 J F C k = 0
235 234 reximi2 k i 1 J | F C i 0 F C k = 0 k 1 J F C k = 0
236 232 235 syl φ k 1 J F C k = 0