Metamath Proof Explorer


Theorem ballotlemfcc

Description: F takes value 0 between positive and negative values. (Contributed by Thierry Arnoux, 2-Apr-2017)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O = c 𝒫 1 M + N | c = M
ballotth.p P = x 𝒫 O x O
ballotth.f F = c O i 1 i c 1 i c
ballotlemfcc.c φ C O
ballotlemfcc.j φ J
ballotlemfcc.3 φ i 1 J 0 F C i
ballotlemfcc.4 φ F C J < 0
Assertion ballotlemfcc φ k 1 J F C k = 0

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O = c 𝒫 1 M + N | c = M
4 ballotth.p P = x 𝒫 O x O
5 ballotth.f F = c O i 1 i c 1 i c
6 ballotlemfcc.c φ C O
7 ballotlemfcc.j φ J
8 ballotlemfcc.3 φ i 1 J 0 F C i
9 ballotlemfcc.4 φ F C J < 0
10 fveq2 i = k F C i = F C k
11 10 breq2d i = k 0 F C i 0 F C k
12 11 elrab k i 1 J | 0 F C i k 1 J 0 F C k
13 12 anbi1i k i 1 J | 0 F C i j i 1 J | 0 F C i j k k 1 J 0 F C k j i 1 J | 0 F C i j k
14 simprl φ k 1 J 0 F C k k 1 J
15 14 adantrr φ k 1 J 0 F C k j i 1 J | 0 F C i j k k 1 J
16 fzssuz 1 J 1
17 uzssz 1
18 16 17 sstri 1 J
19 zssre
20 18 19 sstri 1 J
21 20 sseli k 1 J k
22 21 ltp1d k 1 J k < k + 1
23 1red k 1 J 1
24 21 23 readdcld k 1 J k + 1
25 21 24 ltnled k 1 J k < k + 1 ¬ k + 1 k
26 22 25 mpbid k 1 J ¬ k + 1 k
27 15 26 syl φ k 1 J 0 F C k j i 1 J | 0 F C i j k ¬ k + 1 k
28 simprr φ k 1 J 0 F C k j i 1 J | 0 F C i j k j i 1 J | 0 F C i j k
29 9 adantr φ k = J F C J < 0
30 simpr φ k = J k = J
31 30 fveq2d φ k = J F C k = F C J
32 31 breq1d φ k = J F C k < 0 F C J < 0
33 elnnuz J J 1
34 7 33 sylib φ J 1
35 eluzfz2 J 1 J 1 J
36 34 35 syl φ J 1 J
37 eleq1 k = J k 1 J J 1 J
38 36 37 syl5ibrcom φ k = J k 1 J
39 38 anc2li φ k = J φ k 1 J
40 1eluzge0 1 0
41 fzss1 1 0 1 J 0 J
42 41 sseld 1 0 k 1 J k 0 J
43 40 42 ax-mp k 1 J k 0 J
44 6 adantr φ k 0 J C O
45 elfzelz k 0 J k
46 45 adantl φ k 0 J k
47 1 2 3 4 5 44 46 ballotlemfelz φ k 0 J F C k
48 47 zred φ k 0 J F C k
49 0red φ k 0 J 0
50 48 49 ltnled φ k 0 J F C k < 0 ¬ 0 F C k
51 43 50 sylan2 φ k 1 J F C k < 0 ¬ 0 F C k
52 39 51 syl6 φ k = J F C k < 0 ¬ 0 F C k
53 52 imp φ k = J F C k < 0 ¬ 0 F C k
54 32 53 bitr3d φ k = J F C J < 0 ¬ 0 F C k
55 29 54 mpbid φ k = J ¬ 0 F C k
56 55 ex φ k = J ¬ 0 F C k
57 56 con2d φ 0 F C k ¬ k = J
58 nn1m1nn J J = 1 J 1
59 7 58 syl φ J = 1 J 1
60 8 adantr φ J = 1 i 1 J 0 F C i
61 oveq1 J = 1 J J = 1 J
62 61 adantl φ J = 1 J J = 1 J
63 7 nnzd φ J
64 fzsn J J J = J
65 63 64 syl φ J J = J
66 65 adantr φ J = 1 J J = J
67 62 66 eqtr3d φ J = 1 1 J = J
68 60 67 rexeqtrdv φ J = 1 i J 0 F C i
69 fveq2 i = J F C i = F C J
70 69 breq2d i = J 0 F C i 0 F C J
71 70 rexsng J i J 0 F C i 0 F C J
72 7 71 syl φ i J 0 F C i 0 F C J
73 72 adantr φ J = 1 i J 0 F C i 0 F C J
74 68 73 mpbid φ J = 1 0 F C J
75 9 adantr φ J = 1 F C J < 0
76 1 2 3 4 5 6 63 ballotlemfelz φ F C J
77 76 zred φ F C J
78 0red φ 0
79 77 78 ltnled φ F C J < 0 ¬ 0 F C J
80 79 adantr φ J = 1 F C J < 0 ¬ 0 F C J
81 75 80 mpbid φ J = 1 ¬ 0 F C J
82 74 81 pm2.65da φ ¬ J = 1
83 biortn ¬ J = 1 J 1 ¬ ¬ J = 1 J 1
84 82 83 syl φ J 1 ¬ ¬ J = 1 J 1
85 notnotb J = 1 ¬ ¬ J = 1
86 85 orbi1i J = 1 J 1 ¬ ¬ J = 1 J 1
87 84 86 bitr4di φ J 1 J = 1 J 1
88 59 87 mpbird φ J 1
89 elnnuz J 1 J 1 1
90 88 89 sylib φ J 1 1
91 elfzp1 J 1 1 k 1 J - 1 + 1 k 1 J 1 k = J - 1 + 1
92 90 91 syl φ k 1 J - 1 + 1 k 1 J 1 k = J - 1 + 1
93 7 nncnd φ J
94 1cnd φ 1
95 93 94 npcand φ J - 1 + 1 = J
96 95 oveq2d φ 1 J - 1 + 1 = 1 J
97 96 eleq2d φ k 1 J - 1 + 1 k 1 J
98 95 eqeq2d φ k = J - 1 + 1 k = J
99 98 orbi2d φ k 1 J 1 k = J - 1 + 1 k 1 J 1 k = J
100 92 97 99 3bitr3d φ k 1 J k 1 J 1 k = J
101 orcom k 1 J 1 k = J k = J k 1 J 1
102 100 101 bitrdi φ k 1 J k = J k 1 J 1
103 102 biimpd φ k 1 J k = J k 1 J 1
104 pm5.6 k 1 J ¬ k = J k 1 J 1 k 1 J k = J k 1 J 1
105 103 104 sylibr φ k 1 J ¬ k = J k 1 J 1
106 88 nnzd φ J 1
107 1z 1
108 106 107 jctil φ 1 J 1
109 elfzelz k 1 J 1 k
110 109 107 jctir k 1 J 1 k 1
111 fzaddel 1 J 1 k 1 k 1 J 1 k + 1 1 + 1 J - 1 + 1
112 108 110 111 syl2an φ k 1 J 1 k 1 J 1 k + 1 1 + 1 J - 1 + 1
113 112 biimp3a φ k 1 J 1 k 1 J 1 k + 1 1 + 1 J - 1 + 1
114 113 3anidm23 φ k 1 J 1 k + 1 1 + 1 J - 1 + 1
115 1p1e2 1 + 1 = 2
116 115 a1i φ 1 + 1 = 2
117 116 95 oveq12d φ 1 + 1 J - 1 + 1 = 2 J
118 117 eleq2d φ k + 1 1 + 1 J - 1 + 1 k + 1 2 J
119 2eluzge1 2 1
120 fzss1 2 1 2 J 1 J
121 119 120 ax-mp 2 J 1 J
122 121 sseli k + 1 2 J k + 1 1 J
123 118 122 biimtrdi φ k + 1 1 + 1 J - 1 + 1 k + 1 1 J
124 123 adantr φ k 1 J 1 k + 1 1 + 1 J - 1 + 1 k + 1 1 J
125 114 124 mpd φ k 1 J 1 k + 1 1 J
126 125 ex φ k 1 J 1 k + 1 1 J
127 105 126 syld φ k 1 J ¬ k = J k + 1 1 J
128 57 127 sylan2d φ k 1 J 0 F C k k + 1 1 J
129 128 imp φ k 1 J 0 F C k k + 1 1 J
130 129 adantrr φ k 1 J 0 F C k j i 1 J | 0 F C i j k k + 1 1 J
131 fveq2 i = k + 1 F C i = F C k + 1
132 131 breq2d i = k + 1 0 F C i 0 F C k + 1
133 132 elrab k + 1 i 1 J | 0 F C i k + 1 1 J 0 F C k + 1
134 breq1 j = k + 1 j k k + 1 k
135 134 rspccva j i 1 J | 0 F C i j k k + 1 i 1 J | 0 F C i k + 1 k
136 133 135 sylan2br j i 1 J | 0 F C i j k k + 1 1 J 0 F C k + 1 k + 1 k
137 136 expr j i 1 J | 0 F C i j k k + 1 1 J 0 F C k + 1 k + 1 k
138 137 con3d j i 1 J | 0 F C i j k k + 1 1 J ¬ k + 1 k ¬ 0 F C k + 1
139 28 130 138 syl2anc φ k 1 J 0 F C k j i 1 J | 0 F C i j k ¬ k + 1 k ¬ 0 F C k + 1
140 27 139 mpd φ k 1 J 0 F C k j i 1 J | 0 F C i j k ¬ 0 F C k + 1
141 simplrr φ k 1 J 0 F C k j i 1 J | 0 F C i j k k + 1 C j i 1 J | 0 F C i j k
142 130 adantr φ k 1 J 0 F C k j i 1 J | 0 F C i j k k + 1 C k + 1 1 J
143 0red φ k 1 J 0 F C k k + 1 C 0
144 simpll φ k 1 J 0 F C k k + 1 C φ
145 129 adantr φ k 1 J 0 F C k k + 1 C k + 1 1 J
146 41 sseld 1 0 k + 1 1 J k + 1 0 J
147 40 145 146 mpsyl φ k 1 J 0 F C k k + 1 C k + 1 0 J
148 6 adantr φ k + 1 0 J C O
149 elfzelz k + 1 0 J k + 1
150 149 adantl φ k + 1 0 J k + 1
151 1 2 3 4 5 148 150 ballotlemfelz φ k + 1 0 J F C k + 1
152 151 zred φ k + 1 0 J F C k + 1
153 144 147 152 syl2anc φ k 1 J 0 F C k k + 1 C F C k + 1
154 simplrr φ k 1 J 0 F C k k + 1 C 0 F C k
155 14 adantr φ k 1 J 0 F C k k + 1 C k 1 J
156 155 43 syl φ k 1 J 0 F C k k + 1 C k 0 J
157 128 imdistani φ k 1 J 0 F C k φ k + 1 1 J
158 6 adantr φ k + 1 1 J C O
159 elfznn k + 1 1 J k + 1
160 159 adantl φ k + 1 1 J k + 1
161 1 2 3 4 5 158 160 ballotlemfp1 φ k + 1 1 J ¬ k + 1 C F C k + 1 = F C k + 1 - 1 1 k + 1 C F C k + 1 = F C k + 1 - 1 + 1
162 161 simprd φ k + 1 1 J k + 1 C F C k + 1 = F C k + 1 - 1 + 1
163 162 imp φ k + 1 1 J k + 1 C F C k + 1 = F C k + 1 - 1 + 1
164 157 163 sylan φ k 1 J 0 F C k k + 1 C F C k + 1 = F C k + 1 - 1 + 1
165 elfzelz k 1 J k
166 165 zcnd k 1 J k
167 1cnd k 1 J 1
168 166 167 pncand k 1 J k + 1 - 1 = k
169 168 fveq2d k 1 J F C k + 1 - 1 = F C k
170 169 oveq1d k 1 J F C k + 1 - 1 + 1 = F C k + 1
171 170 eqeq2d k 1 J F C k + 1 = F C k + 1 - 1 + 1 F C k + 1 = F C k + 1
172 155 171 syl φ k 1 J 0 F C k k + 1 C F C k + 1 = F C k + 1 - 1 + 1 F C k + 1 = F C k + 1
173 164 172 mpbid φ k 1 J 0 F C k k + 1 C F C k + 1 = F C k + 1
174 0z 0
175 zleltp1 0 F C k 0 F C k 0 < F C k + 1
176 174 47 175 sylancr φ k 0 J 0 F C k 0 < F C k + 1
177 176 adantr φ k 0 J F C k + 1 = F C k + 1 0 F C k 0 < F C k + 1
178 breq2 F C k + 1 = F C k + 1 0 < F C k + 1 0 < F C k + 1
179 178 adantl φ k 0 J F C k + 1 = F C k + 1 0 < F C k + 1 0 < F C k + 1
180 177 179 bitr4d φ k 0 J F C k + 1 = F C k + 1 0 F C k 0 < F C k + 1
181 144 156 173 180 syl21anc φ k 1 J 0 F C k k + 1 C 0 F C k 0 < F C k + 1
182 154 181 mpbid φ k 1 J 0 F C k k + 1 C 0 < F C k + 1
183 143 153 182 ltled φ k 1 J 0 F C k k + 1 C 0 F C k + 1
184 183 adantlrr φ k 1 J 0 F C k j i 1 J | 0 F C i j k k + 1 C 0 F C k + 1
185 141 142 184 136 syl12anc φ k 1 J 0 F C k j i 1 J | 0 F C i j k k + 1 C k + 1 k
186 27 185 mtand φ k 1 J 0 F C k j i 1 J | 0 F C i j k ¬ k + 1 C
187 161 simpld φ k + 1 1 J ¬ k + 1 C F C k + 1 = F C k + 1 - 1 1
188 187 imp φ k + 1 1 J ¬ k + 1 C F C k + 1 = F C k + 1 - 1 1
189 157 188 sylan φ k 1 J 0 F C k ¬ k + 1 C F C k + 1 = F C k + 1 - 1 1
190 14 adantr φ k 1 J 0 F C k ¬ k + 1 C k 1 J
191 169 oveq1d k 1 J F C k + 1 - 1 1 = F C k 1
192 191 eqeq2d k 1 J F C k + 1 = F C k + 1 - 1 1 F C k + 1 = F C k 1
193 190 192 syl φ k 1 J 0 F C k ¬ k + 1 C F C k + 1 = F C k + 1 - 1 1 F C k + 1 = F C k 1
194 189 193 mpbid φ k 1 J 0 F C k ¬ k + 1 C F C k + 1 = F C k 1
195 194 adantlrr φ k 1 J 0 F C k j i 1 J | 0 F C i j k ¬ k + 1 C F C k + 1 = F C k 1
196 186 195 mpdan φ k 1 J 0 F C k j i 1 J | 0 F C i j k F C k + 1 = F C k 1
197 breq2 F C k + 1 = F C k 1 0 F C k + 1 0 F C k 1
198 197 notbid F C k + 1 = F C k 1 ¬ 0 F C k + 1 ¬ 0 F C k 1
199 196 198 syl φ k 1 J 0 F C k j i 1 J | 0 F C i j k ¬ 0 F C k + 1 ¬ 0 F C k 1
200 140 199 mpbid φ k 1 J 0 F C k j i 1 J | 0 F C i j k ¬ 0 F C k 1
201 14 43 syl φ k 1 J 0 F C k k 0 J
202 201 47 syldan φ k 1 J 0 F C k F C k
203 202 adantrr φ k 1 J 0 F C k j i 1 J | 0 F C i j k F C k
204 zlem1lt F C k 0 F C k 0 F C k 1 < 0
205 174 204 mpan2 F C k F C k 0 F C k 1 < 0
206 zre F C k F C k
207 1red F C k 1
208 206 207 resubcld F C k F C k 1
209 0red F C k 0
210 208 209 ltnled F C k F C k 1 < 0 ¬ 0 F C k 1
211 205 210 bitrd F C k F C k 0 ¬ 0 F C k 1
212 203 211 syl φ k 1 J 0 F C k j i 1 J | 0 F C i j k F C k 0 ¬ 0 F C k 1
213 200 212 mpbird φ k 1 J 0 F C k j i 1 J | 0 F C i j k F C k 0
214 simprlr φ k 1 J 0 F C k j i 1 J | 0 F C i j k 0 F C k
215 203 zred φ k 1 J 0 F C k j i 1 J | 0 F C i j k F C k
216 0red φ k 1 J 0 F C k j i 1 J | 0 F C i j k 0
217 215 216 letri3d φ k 1 J 0 F C k j i 1 J | 0 F C i j k F C k = 0 F C k 0 0 F C k
218 213 214 217 mpbir2and φ k 1 J 0 F C k j i 1 J | 0 F C i j k F C k = 0
219 13 218 sylan2b φ k i 1 J | 0 F C i j i 1 J | 0 F C i j k F C k = 0
220 ssrab2 i 1 J | 0 F C i 1 J
221 220 20 sstri i 1 J | 0 F C i
222 221 a1i φ i 1 J | 0 F C i
223 fzfi 1 J Fin
224 ssfi 1 J Fin i 1 J | 0 F C i 1 J i 1 J | 0 F C i Fin
225 223 220 224 mp2an i 1 J | 0 F C i Fin
226 225 a1i φ i 1 J | 0 F C i Fin
227 rabn0 i 1 J | 0 F C i i 1 J 0 F C i
228 8 227 sylibr φ i 1 J | 0 F C i
229 fimaxre i 1 J | 0 F C i i 1 J | 0 F C i Fin i 1 J | 0 F C i k i 1 J | 0 F C i j i 1 J | 0 F C i j k
230 222 226 228 229 syl3anc φ k i 1 J | 0 F C i j i 1 J | 0 F C i j k
231 219 230 reximddv φ k i 1 J | 0 F C i F C k = 0
232 elrabi k i 1 J | 0 F C i k 1 J
233 232 anim1i k i 1 J | 0 F C i F C k = 0 k 1 J F C k = 0
234 233 reximi2 k i 1 J | 0 F C i F C k = 0 k 1 J F C k = 0
235 231 234 syl φ k 1 J F C k = 0