Metamath Proof Explorer


Theorem ballotlemfelz

Description: ( FC ) has values in ZZ . (Contributed by Thierry Arnoux, 23-Nov-2016)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O = c 𝒫 1 M + N | c = M
ballotth.p P = x 𝒫 O x O
ballotth.f F = c O i 1 i c 1 i c
ballotlemfval.c φ C O
ballotlemfval.j φ J
Assertion ballotlemfelz φ F C J

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O = c 𝒫 1 M + N | c = M
4 ballotth.p P = x 𝒫 O x O
5 ballotth.f F = c O i 1 i c 1 i c
6 ballotlemfval.c φ C O
7 ballotlemfval.j φ J
8 1 2 3 4 5 6 7 ballotlemfval φ F C J = 1 J C 1 J C
9 fzfi 1 J Fin
10 inss1 1 J C 1 J
11 ssfi 1 J Fin 1 J C 1 J 1 J C Fin
12 9 10 11 mp2an 1 J C Fin
13 hashcl 1 J C Fin 1 J C 0
14 12 13 ax-mp 1 J C 0
15 14 nn0zi 1 J C
16 difss 1 J C 1 J
17 ssfi 1 J Fin 1 J C 1 J 1 J C Fin
18 9 16 17 mp2an 1 J C Fin
19 hashcl 1 J C Fin 1 J C 0
20 18 19 ax-mp 1 J C 0
21 20 nn0zi 1 J C
22 zsubcl 1 J C 1 J C 1 J C 1 J C
23 15 21 22 mp2an 1 J C 1 J C
24 8 23 eqeltrdi φ F C J