Metamath Proof Explorer


Theorem ballotlemfrc

Description: Express the value of ( F( RC ) ) in terms of the newly defined .^ . (Contributed by Thierry Arnoux, 21-Apr-2017)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O = c 𝒫 1 M + N | c = M
ballotth.p P = x 𝒫 O x O
ballotth.f F = c O i 1 i c 1 i c
ballotth.e E = c O | i 1 M + N 0 < F c i
ballotth.mgtn N < M
ballotth.i I = c O E sup k 1 M + N | F c k = 0 <
ballotth.s S = c O E i 1 M + N if i I c I c + 1 - i i
ballotth.r R = c O E S c c
ballotlemg × ˙ = u Fin , v Fin v u v u
Assertion ballotlemfrc C O E J 1 I C F R C J = C × ˙ S C J I C

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O = c 𝒫 1 M + N | c = M
4 ballotth.p P = x 𝒫 O x O
5 ballotth.f F = c O i 1 i c 1 i c
6 ballotth.e E = c O | i 1 M + N 0 < F c i
7 ballotth.mgtn N < M
8 ballotth.i I = c O E sup k 1 M + N | F c k = 0 <
9 ballotth.s S = c O E i 1 M + N if i I c I c + 1 - i i
10 ballotth.r R = c O E S c c
11 ballotlemg × ˙ = u Fin , v Fin v u v u
12 1 2 3 4 5 6 7 8 9 ballotlemsf1o C O E S C : 1 M + N 1-1 onto 1 M + N S C -1 = S C
13 12 simpld C O E S C : 1 M + N 1-1 onto 1 M + N
14 f1of1 S C : 1 M + N 1-1 onto 1 M + N S C : 1 M + N 1-1 1 M + N
15 13 14 syl C O E S C : 1 M + N 1-1 1 M + N
16 15 adantr C O E J 1 I C S C : 1 M + N 1-1 1 M + N
17 1 2 3 4 5 6 7 8 ballotlemiex C O E I C 1 M + N F C I C = 0
18 17 simpld C O E I C 1 M + N
19 18 adantr C O E J 1 I C I C 1 M + N
20 elfzuz3 I C 1 M + N M + N I C
21 19 20 syl C O E J 1 I C M + N I C
22 elfzuz3 J 1 I C I C J
23 22 adantl C O E J 1 I C I C J
24 uztrn M + N I C I C J M + N J
25 21 23 24 syl2anc C O E J 1 I C M + N J
26 fzss2 M + N J 1 J 1 M + N
27 25 26 syl C O E J 1 I C 1 J 1 M + N
28 ssinss1 1 J 1 M + N 1 J R C 1 M + N
29 27 28 syl C O E J 1 I C 1 J R C 1 M + N
30 f1ores S C : 1 M + N 1-1 1 M + N 1 J R C 1 M + N S C 1 J R C : 1 J R C 1-1 onto S C 1 J R C
31 16 29 30 syl2anc C O E J 1 I C S C 1 J R C : 1 J R C 1-1 onto S C 1 J R C
32 ovex 1 J V
33 32 inex1 1 J R C V
34 33 f1oen S C 1 J R C : 1 J R C 1-1 onto S C 1 J R C 1 J R C S C 1 J R C
35 hasheni 1 J R C S C 1 J R C 1 J R C = S C 1 J R C
36 31 34 35 3syl C O E J 1 I C 1 J R C = S C 1 J R C
37 27 ssdifssd C O E J 1 I C 1 J R C 1 M + N
38 f1ores S C : 1 M + N 1-1 1 M + N 1 J R C 1 M + N S C 1 J R C : 1 J R C 1-1 onto S C 1 J R C
39 16 37 38 syl2anc C O E J 1 I C S C 1 J R C : 1 J R C 1-1 onto S C 1 J R C
40 difexg 1 J V 1 J R C V
41 32 40 ax-mp 1 J R C V
42 41 f1oen S C 1 J R C : 1 J R C 1-1 onto S C 1 J R C 1 J R C S C 1 J R C
43 hasheni 1 J R C S C 1 J R C 1 J R C = S C 1 J R C
44 39 42 43 3syl C O E J 1 I C 1 J R C = S C 1 J R C
45 36 44 oveq12d C O E J 1 I C 1 J R C 1 J R C = S C 1 J R C S C 1 J R C
46 1 2 3 4 5 6 7 8 9 10 ballotlemro C O E R C O
47 46 adantr C O E J 1 I C R C O
48 elfzelz J 1 I C J
49 48 adantl C O E J 1 I C J
50 1 2 3 4 5 47 49 ballotlemfval C O E J 1 I C F R C J = 1 J R C 1 J R C
51 fzfi 1 M + N Fin
52 eldifi C O E C O
53 1 2 3 ballotlemelo C O C 1 M + N C = M
54 53 simplbi C O C 1 M + N
55 52 54 syl C O E C 1 M + N
56 55 adantr C O E J 1 I C C 1 M + N
57 ssfi 1 M + N Fin C 1 M + N C Fin
58 51 56 57 sylancr C O E J 1 I C C Fin
59 fzfid C O E J 1 I C S C J I C Fin
60 1 2 3 4 5 6 7 8 9 10 11 ballotlemgval C Fin S C J I C Fin C × ˙ S C J I C = S C J I C C S C J I C C
61 58 59 60 syl2anc C O E J 1 I C C × ˙ S C J I C = S C J I C C S C J I C C
62 dff1o3 S C : 1 M + N 1-1 onto 1 M + N S C : 1 M + N onto 1 M + N Fun S C -1
63 62 simprbi S C : 1 M + N 1-1 onto 1 M + N Fun S C -1
64 imain Fun S C -1 S C 1 J R C = S C 1 J S C R C
65 13 63 64 3syl C O E S C 1 J R C = S C 1 J S C R C
66 65 adantr C O E J 1 I C S C 1 J R C = S C 1 J S C R C
67 1 2 3 4 5 6 7 8 9 ballotlemsima C O E J 1 I C S C 1 J = S C J I C
68 1 2 3 4 5 6 7 8 9 10 ballotlemscr C O E S C R C = C
69 68 adantr C O E J 1 I C S C R C = C
70 67 69 ineq12d C O E J 1 I C S C 1 J S C R C = S C J I C C
71 66 70 eqtrd C O E J 1 I C S C 1 J R C = S C J I C C
72 71 fveq2d C O E J 1 I C S C 1 J R C = S C J I C C
73 imadif Fun S C -1 S C 1 J R C = S C 1 J S C R C
74 13 63 73 3syl C O E S C 1 J R C = S C 1 J S C R C
75 74 adantr C O E J 1 I C S C 1 J R C = S C 1 J S C R C
76 67 69 difeq12d C O E J 1 I C S C 1 J S C R C = S C J I C C
77 75 76 eqtrd C O E J 1 I C S C 1 J R C = S C J I C C
78 77 fveq2d C O E J 1 I C S C 1 J R C = S C J I C C
79 72 78 oveq12d C O E J 1 I C S C 1 J R C S C 1 J R C = S C J I C C S C J I C C
80 61 79 eqtr4d C O E J 1 I C C × ˙ S C J I C = S C 1 J R C S C 1 J R C
81 45 50 80 3eqtr4d C O E J 1 I C F R C J = C × ˙ S C J I C