Metamath Proof Explorer


Theorem ballotlemfrcn0

Description: Value of F for a reversed counting ( RC ) , before the first tie, cannot be zero. (Contributed by Thierry Arnoux, 25-Apr-2017) (Revised by AV, 6-Oct-2020)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O = c 𝒫 1 M + N | c = M
ballotth.p P = x 𝒫 O x O
ballotth.f F = c O i 1 i c 1 i c
ballotth.e E = c O | i 1 M + N 0 < F c i
ballotth.mgtn N < M
ballotth.i I = c O E sup k 1 M + N | F c k = 0 <
ballotth.s S = c O E i 1 M + N if i I c I c + 1 - i i
ballotth.r R = c O E S c c
Assertion ballotlemfrcn0 C O E J 1 M + N J < I C F R C J 0

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O = c 𝒫 1 M + N | c = M
4 ballotth.p P = x 𝒫 O x O
5 ballotth.f F = c O i 1 i c 1 i c
6 ballotth.e E = c O | i 1 M + N 0 < F c i
7 ballotth.mgtn N < M
8 ballotth.i I = c O E sup k 1 M + N | F c k = 0 <
9 ballotth.s S = c O E i 1 M + N if i I c I c + 1 - i i
10 ballotth.r R = c O E S c c
11 1zzd C O E J 1 M + N J < I C 1
12 nnaddcl M N M + N
13 1 2 12 mp2an M + N
14 13 nnzi M + N
15 14 a1i C O E J 1 M + N J < I C M + N
16 1 2 3 4 5 6 7 8 9 ballotlemsdom C O E J 1 M + N S C J 1 M + N
17 16 elfzelzd C O E J 1 M + N S C J
18 17 3adant3 C O E J 1 M + N J < I C S C J
19 18 11 zsubcld C O E J 1 M + N J < I C S C J 1
20 1 2 3 4 5 6 7 8 9 ballotlemsgt1 C O E J 1 M + N J < I C 1 < S C J
21 zltlem1 1 S C J 1 < S C J 1 S C J 1
22 21 biimpa 1 S C J 1 < S C J 1 S C J 1
23 11 18 20 22 syl21anc C O E J 1 M + N J < I C 1 S C J 1
24 18 zred C O E J 1 M + N J < I C S C J
25 1red C O E J 1 M + N J < I C 1
26 24 25 resubcld C O E J 1 M + N J < I C S C J 1
27 simp1 C O E J 1 M + N J < I C C O E
28 1 2 3 4 5 6 7 8 ballotlemiex C O E I C 1 M + N F C I C = 0
29 28 simpld C O E I C 1 M + N
30 elfzelz I C 1 M + N I C
31 27 29 30 3syl C O E J 1 M + N J < I C I C
32 31 zred C O E J 1 M + N J < I C I C
33 15 zred C O E J 1 M + N J < I C M + N
34 elfzelz J 1 M + N J
35 34 3ad2ant2 C O E J 1 M + N J < I C J
36 elfzle1 J 1 M + N 1 J
37 36 3ad2ant2 C O E J 1 M + N J < I C 1 J
38 35 zred C O E J 1 M + N J < I C J
39 simp3 C O E J 1 M + N J < I C J < I C
40 38 32 39 ltled C O E J 1 M + N J < I C J I C
41 11 31 35 37 40 elfzd C O E J 1 M + N J < I C J 1 I C
42 1 2 3 4 5 6 7 8 9 ballotlemsel1i C O E J 1 I C S C J 1 I C
43 27 41 42 syl2anc C O E J 1 M + N J < I C S C J 1 I C
44 elfzle2 S C J 1 I C S C J I C
45 43 44 syl C O E J 1 M + N J < I C S C J I C
46 zlem1lt S C J I C S C J I C S C J 1 < I C
47 18 31 46 syl2anc C O E J 1 M + N J < I C S C J I C S C J 1 < I C
48 45 47 mpbid C O E J 1 M + N J < I C S C J 1 < I C
49 26 32 48 ltled C O E J 1 M + N J < I C S C J 1 I C
50 elfzle2 I C 1 M + N I C M + N
51 27 29 50 3syl C O E J 1 M + N J < I C I C M + N
52 26 32 33 49 51 letrd C O E J 1 M + N J < I C S C J 1 M + N
53 11 15 19 23 52 elfzd C O E J 1 M + N J < I C S C J 1 1 M + N
54 biid S C J 1 < I C S C J 1 < I C
55 48 54 sylibr C O E J 1 M + N J < I C S C J 1 < I C
56 1 2 3 4 5 6 7 8 ballotlemi C O E I C = sup k 1 M + N | F C k = 0 <
57 56 breq2d C O E S C J 1 < I C S C J 1 < sup k 1 M + N | F C k = 0 <
58 57 3ad2ant1 C O E J 1 M + N J < I C S C J 1 < I C S C J 1 < sup k 1 M + N | F C k = 0 <
59 55 58 mpbid C O E J 1 M + N J < I C S C J 1 < sup k 1 M + N | F C k = 0 <
60 ltso < Or
61 60 a1i C O E < Or
62 1 2 3 4 5 6 7 8 ballotlemsup C O E z w k 1 M + N | F C k = 0 ¬ w < z w z < w y k 1 M + N | F C k = 0 y < w
63 61 62 inflb C O E S C J 1 k 1 M + N | F C k = 0 ¬ S C J 1 < sup k 1 M + N | F C k = 0 <
64 63 con2d C O E S C J 1 < sup k 1 M + N | F C k = 0 < ¬ S C J 1 k 1 M + N | F C k = 0
65 27 59 64 sylc C O E J 1 M + N J < I C ¬ S C J 1 k 1 M + N | F C k = 0
66 fveqeq2 k = S C J 1 F C k = 0 F C S C J 1 = 0
67 66 elrab S C J 1 k 1 M + N | F C k = 0 S C J 1 1 M + N F C S C J 1 = 0
68 65 67 sylnib C O E J 1 M + N J < I C ¬ S C J 1 1 M + N F C S C J 1 = 0
69 imnan S C J 1 1 M + N ¬ F C S C J 1 = 0 ¬ S C J 1 1 M + N F C S C J 1 = 0
70 68 69 sylibr C O E J 1 M + N J < I C S C J 1 1 M + N ¬ F C S C J 1 = 0
71 53 70 mpd C O E J 1 M + N J < I C ¬ F C S C J 1 = 0
72 71 neqned C O E J 1 M + N J < I C F C S C J 1 0
73 1 2 3 4 5 6 7 8 9 10 ballotlemro C O E R C O
74 73 adantr C O E J 1 I C R C O
75 elfzelz J 1 I C J
76 75 adantl C O E J 1 I C J
77 1 2 3 4 5 74 76 ballotlemfelz C O E J 1 I C F R C J
78 77 zcnd C O E J 1 I C F R C J
79 78 negeq0d C O E J 1 I C F R C J = 0 F R C J = 0
80 eqid u Fin , v Fin v u v u = u Fin , v Fin v u v u
81 1 2 3 4 5 6 7 8 9 10 80 ballotlemfrceq C O E J 1 I C F C S C J 1 = F R C J
82 81 eqeq1d C O E J 1 I C F C S C J 1 = 0 F R C J = 0
83 79 82 bitr4d C O E J 1 I C F R C J = 0 F C S C J 1 = 0
84 83 necon3bid C O E J 1 I C F R C J 0 F C S C J 1 0
85 27 41 84 syl2anc C O E J 1 M + N J < I C F R C J 0 F C S C J 1 0
86 72 85 mpbird C O E J 1 M + N J < I C F R C J 0