Metamath Proof Explorer


Theorem ballotlemfval

Description: The value of F . (Contributed by Thierry Arnoux, 23-Nov-2016)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O = c 𝒫 1 M + N | c = M
ballotth.p P = x 𝒫 O x O
ballotth.f F = c O i 1 i c 1 i c
ballotlemfval.c φ C O
ballotlemfval.j φ J
Assertion ballotlemfval φ F C J = 1 J C 1 J C

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O = c 𝒫 1 M + N | c = M
4 ballotth.p P = x 𝒫 O x O
5 ballotth.f F = c O i 1 i c 1 i c
6 ballotlemfval.c φ C O
7 ballotlemfval.j φ J
8 simpl b = C i b = C
9 8 ineq2d b = C i 1 i b = 1 i C
10 9 fveq2d b = C i 1 i b = 1 i C
11 8 difeq2d b = C i 1 i b = 1 i C
12 11 fveq2d b = C i 1 i b = 1 i C
13 10 12 oveq12d b = C i 1 i b 1 i b = 1 i C 1 i C
14 13 mpteq2dva b = C i 1 i b 1 i b = i 1 i C 1 i C
15 ineq2 b = c 1 i b = 1 i c
16 15 fveq2d b = c 1 i b = 1 i c
17 difeq2 b = c 1 i b = 1 i c
18 17 fveq2d b = c 1 i b = 1 i c
19 16 18 oveq12d b = c 1 i b 1 i b = 1 i c 1 i c
20 19 mpteq2dv b = c i 1 i b 1 i b = i 1 i c 1 i c
21 20 cbvmptv b O i 1 i b 1 i b = c O i 1 i c 1 i c
22 5 21 eqtr4i F = b O i 1 i b 1 i b
23 zex V
24 23 mptex i 1 i C 1 i C V
25 14 22 24 fvmpt C O F C = i 1 i C 1 i C
26 6 25 syl φ F C = i 1 i C 1 i C
27 oveq2 i = J 1 i = 1 J
28 27 ineq1d i = J 1 i C = 1 J C
29 28 fveq2d i = J 1 i C = 1 J C
30 27 difeq1d i = J 1 i C = 1 J C
31 30 fveq2d i = J 1 i C = 1 J C
32 29 31 oveq12d i = J 1 i C 1 i C = 1 J C 1 J C
33 32 adantl φ i = J 1 i C 1 i C = 1 J C 1 J C
34 ovexd φ 1 J C 1 J C V
35 26 33 7 34 fvmptd φ F C J = 1 J C 1 J C