Metamath Proof Explorer


Theorem ballotlemgval

Description: Expand the value of .^ . (Contributed by Thierry Arnoux, 21-Apr-2017)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O = c 𝒫 1 M + N | c = M
ballotth.p P = x 𝒫 O x O
ballotth.f F = c O i 1 i c 1 i c
ballotth.e E = c O | i 1 M + N 0 < F c i
ballotth.mgtn N < M
ballotth.i I = c O E sup k 1 M + N | F c k = 0 <
ballotth.s S = c O E i 1 M + N if i I c I c + 1 - i i
ballotth.r R = c O E S c c
ballotlemg × ˙ = u Fin , v Fin v u v u
Assertion ballotlemgval U Fin V Fin U × ˙ V = V U V U

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O = c 𝒫 1 M + N | c = M
4 ballotth.p P = x 𝒫 O x O
5 ballotth.f F = c O i 1 i c 1 i c
6 ballotth.e E = c O | i 1 M + N 0 < F c i
7 ballotth.mgtn N < M
8 ballotth.i I = c O E sup k 1 M + N | F c k = 0 <
9 ballotth.s S = c O E i 1 M + N if i I c I c + 1 - i i
10 ballotth.r R = c O E S c c
11 ballotlemg × ˙ = u Fin , v Fin v u v u
12 ineq2 u = U v u = v U
13 12 fveq2d u = U v u = v U
14 difeq2 u = U v u = v U
15 14 fveq2d u = U v u = v U
16 13 15 oveq12d u = U v u v u = v U v U
17 ineq1 v = V v U = V U
18 17 fveq2d v = V v U = V U
19 difeq1 v = V v U = V U
20 19 fveq2d v = V v U = V U
21 18 20 oveq12d v = V v U v U = V U V U
22 ovex V U V U V
23 16 21 11 22 ovmpo U Fin V Fin U × ˙ V = V U V U