Metamath Proof Explorer


Theorem ballotlemi

Description: Value of I for a given counting C . (Contributed by Thierry Arnoux, 1-Dec-2016) (Revised by AV, 6-Oct-2020)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O = c 𝒫 1 M + N | c = M
ballotth.p P = x 𝒫 O x O
ballotth.f F = c O i 1 i c 1 i c
ballotth.e E = c O | i 1 M + N 0 < F c i
ballotth.mgtn N < M
ballotth.i I = c O E sup k 1 M + N | F c k = 0 <
Assertion ballotlemi C O E I C = sup k 1 M + N | F C k = 0 <

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O = c 𝒫 1 M + N | c = M
4 ballotth.p P = x 𝒫 O x O
5 ballotth.f F = c O i 1 i c 1 i c
6 ballotth.e E = c O | i 1 M + N 0 < F c i
7 ballotth.mgtn N < M
8 ballotth.i I = c O E sup k 1 M + N | F c k = 0 <
9 fveq2 d = C F d = F C
10 9 fveq1d d = C F d k = F C k
11 10 eqeq1d d = C F d k = 0 F C k = 0
12 11 rabbidv d = C k 1 M + N | F d k = 0 = k 1 M + N | F C k = 0
13 12 infeq1d d = C sup k 1 M + N | F d k = 0 < = sup k 1 M + N | F C k = 0 <
14 fveq2 c = d F c = F d
15 14 fveq1d c = d F c k = F d k
16 15 eqeq1d c = d F c k = 0 F d k = 0
17 16 rabbidv c = d k 1 M + N | F c k = 0 = k 1 M + N | F d k = 0
18 17 infeq1d c = d sup k 1 M + N | F c k = 0 < = sup k 1 M + N | F d k = 0 <
19 18 cbvmptv c O E sup k 1 M + N | F c k = 0 < = d O E sup k 1 M + N | F d k = 0 <
20 8 19 eqtri I = d O E sup k 1 M + N | F d k = 0 <
21 ltso < Or
22 21 infex sup k 1 M + N | F C k = 0 < V
23 13 20 22 fvmpt C O E I C = sup k 1 M + N | F C k = 0 <