Metamath Proof Explorer


Theorem ballotlemii

Description: The first tie cannot be reached at the first pick. (Contributed by Thierry Arnoux, 4-Apr-2017)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O = c 𝒫 1 M + N | c = M
ballotth.p P = x 𝒫 O x O
ballotth.f F = c O i 1 i c 1 i c
ballotth.e E = c O | i 1 M + N 0 < F c i
ballotth.mgtn N < M
ballotth.i I = c O E sup k 1 M + N | F c k = 0 <
Assertion ballotlemii C O E 1 C I C 1

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O = c 𝒫 1 M + N | c = M
4 ballotth.p P = x 𝒫 O x O
5 ballotth.f F = c O i 1 i c 1 i c
6 ballotth.e E = c O | i 1 M + N 0 < F c i
7 ballotth.mgtn N < M
8 ballotth.i I = c O E sup k 1 M + N | F c k = 0 <
9 1e0p1 1 = 0 + 1
10 ax-1ne0 1 0
11 9 10 eqnetrri 0 + 1 0
12 11 neii ¬ 0 + 1 = 0
13 eldifi C O E C O
14 1nn 1
15 14 a1i C O E 1
16 1 2 3 4 5 13 15 ballotlemfp1 C O E ¬ 1 C F C 1 = F C 1 1 1 1 C F C 1 = F C 1 1 + 1
17 16 simprd C O E 1 C F C 1 = F C 1 1 + 1
18 17 imp C O E 1 C F C 1 = F C 1 1 + 1
19 1m1e0 1 1 = 0
20 19 fveq2i F C 1 1 = F C 0
21 20 oveq1i F C 1 1 + 1 = F C 0 + 1
22 21 a1i C O E 1 C F C 1 1 + 1 = F C 0 + 1
23 1 2 3 4 5 ballotlemfval0 C O F C 0 = 0
24 13 23 syl C O E F C 0 = 0
25 24 adantr C O E 1 C F C 0 = 0
26 25 oveq1d C O E 1 C F C 0 + 1 = 0 + 1
27 18 22 26 3eqtrrd C O E 1 C 0 + 1 = F C 1
28 27 eqeq1d C O E 1 C 0 + 1 = 0 F C 1 = 0
29 12 28 mtbii C O E 1 C ¬ F C 1 = 0
30 1 2 3 4 5 6 7 8 ballotlemiex C O E I C 1 M + N F C I C = 0
31 30 simprd C O E F C I C = 0
32 31 ad2antrr C O E 1 C I C = 1 F C I C = 0
33 fveqeq2 I C = 1 F C I C = 0 F C 1 = 0
34 33 adantl C O E 1 C I C = 1 F C I C = 0 F C 1 = 0
35 32 34 mpbid C O E 1 C I C = 1 F C 1 = 0
36 29 35 mtand C O E 1 C ¬ I C = 1
37 36 neqned C O E 1 C I C 1