Metamath Proof Explorer


Theorem ballotlemirc

Description: Applying R does not change first ties. (Contributed by Thierry Arnoux, 19-Apr-2017) (Revised by AV, 6-Oct-2020)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O = c 𝒫 1 M + N | c = M
ballotth.p P = x 𝒫 O x O
ballotth.f F = c O i 1 i c 1 i c
ballotth.e E = c O | i 1 M + N 0 < F c i
ballotth.mgtn N < M
ballotth.i I = c O E sup k 1 M + N | F c k = 0 <
ballotth.s S = c O E i 1 M + N if i I c I c + 1 - i i
ballotth.r R = c O E S c c
Assertion ballotlemirc C O E I R C = I C

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O = c 𝒫 1 M + N | c = M
4 ballotth.p P = x 𝒫 O x O
5 ballotth.f F = c O i 1 i c 1 i c
6 ballotth.e E = c O | i 1 M + N 0 < F c i
7 ballotth.mgtn N < M
8 ballotth.i I = c O E sup k 1 M + N | F c k = 0 <
9 ballotth.s S = c O E i 1 M + N if i I c I c + 1 - i i
10 ballotth.r R = c O E S c c
11 1 2 3 4 5 6 7 8 9 10 ballotlemrc C O E R C O E
12 1 2 3 4 5 6 7 8 ballotlemi R C O E I R C = sup k 1 M + N | F R C k = 0 <
13 11 12 syl C O E I R C = sup k 1 M + N | F R C k = 0 <
14 ltso < Or
15 14 a1i C O E < Or
16 1 2 3 4 5 6 7 8 ballotlemiex C O E I C 1 M + N F C I C = 0
17 16 simpld C O E I C 1 M + N
18 17 elfzelzd C O E I C
19 18 zred C O E I C
20 eqid u Fin , v Fin v u v u = u Fin , v Fin v u v u
21 1 2 3 4 5 6 7 8 9 10 20 ballotlemfrci C O E F R C I C = 0
22 fveqeq2 k = I C F R C k = 0 F R C I C = 0
23 22 elrab I C k 1 M + N | F R C k = 0 I C 1 M + N F R C I C = 0
24 17 21 23 sylanbrc C O E I C k 1 M + N | F R C k = 0
25 elrabi y k 1 M + N | F R C k = 0 y 1 M + N
26 25 anim2i C O E y k 1 M + N | F R C k = 0 C O E y 1 M + N
27 simpr C O E y 1 M + N y < I C y < I C
28 1 2 3 4 5 6 7 8 9 10 ballotlemfrcn0 C O E y 1 M + N y < I C F R C y 0
29 28 neneqd C O E y 1 M + N y < I C ¬ F R C y = 0
30 fveqeq2 k = y F R C k = 0 F R C y = 0
31 30 elrab y k 1 M + N | F R C k = 0 y 1 M + N F R C y = 0
32 31 simprbi y k 1 M + N | F R C k = 0 F R C y = 0
33 29 32 nsyl C O E y 1 M + N y < I C ¬ y k 1 M + N | F R C k = 0
34 33 3expa C O E y 1 M + N y < I C ¬ y k 1 M + N | F R C k = 0
35 27 34 syldan C O E y 1 M + N y < I C ¬ y k 1 M + N | F R C k = 0
36 35 ex C O E y 1 M + N y < I C ¬ y k 1 M + N | F R C k = 0
37 36 con2d C O E y 1 M + N y k 1 M + N | F R C k = 0 ¬ y < I C
38 37 imp C O E y 1 M + N y k 1 M + N | F R C k = 0 ¬ y < I C
39 26 38 sylancom C O E y k 1 M + N | F R C k = 0 ¬ y < I C
40 15 19 24 39 infmin C O E sup k 1 M + N | F R C k = 0 < = I C
41 13 40 eqtrd C O E I R C = I C