Metamath Proof Explorer


Theorem ballotlemodife

Description: Elements of ( O \ E ) . (Contributed by Thierry Arnoux, 7-Dec-2016)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O = c 𝒫 1 M + N | c = M
ballotth.p P = x 𝒫 O x O
ballotth.f F = c O i 1 i c 1 i c
ballotth.e E = c O | i 1 M + N 0 < F c i
Assertion ballotlemodife C O E C O i 1 M + N F C i 0

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O = c 𝒫 1 M + N | c = M
4 ballotth.p P = x 𝒫 O x O
5 ballotth.f F = c O i 1 i c 1 i c
6 ballotth.e E = c O | i 1 M + N 0 < F c i
7 eldif C O E C O ¬ C E
8 df-or C O ¬ C O C O ¬ i 1 M + N 0 < F C i ¬ C O ¬ C O C O ¬ i 1 M + N 0 < F C i
9 pm3.24 ¬ C O ¬ C O
10 9 a1bi C O ¬ i 1 M + N 0 < F C i ¬ C O ¬ C O C O ¬ i 1 M + N 0 < F C i
11 8 10 bitr4i C O ¬ C O C O ¬ i 1 M + N 0 < F C i C O ¬ i 1 M + N 0 < F C i
12 1 2 3 4 5 6 ballotleme C E C O i 1 M + N 0 < F C i
13 12 notbii ¬ C E ¬ C O i 1 M + N 0 < F C i
14 13 anbi2i C O ¬ C E C O ¬ C O i 1 M + N 0 < F C i
15 ianor ¬ C O i 1 M + N 0 < F C i ¬ C O ¬ i 1 M + N 0 < F C i
16 15 anbi2i C O ¬ C O i 1 M + N 0 < F C i C O ¬ C O ¬ i 1 M + N 0 < F C i
17 andi C O ¬ C O ¬ i 1 M + N 0 < F C i C O ¬ C O C O ¬ i 1 M + N 0 < F C i
18 14 16 17 3bitri C O ¬ C E C O ¬ C O C O ¬ i 1 M + N 0 < F C i
19 fz1ssfz0 1 M + N 0 M + N
20 19 a1i C O 1 M + N 0 M + N
21 20 sseld C O i 1 M + N i 0 M + N
22 21 imdistani C O i 1 M + N C O i 0 M + N
23 simpl C O j 0 M + N C O
24 elfzelz j 0 M + N j
25 24 adantl C O j 0 M + N j
26 1 2 3 4 5 23 25 ballotlemfelz C O j 0 M + N F C j
27 26 zred C O j 0 M + N F C j
28 27 sbimi i j C O j 0 M + N i j F C j
29 sban i j C O j 0 M + N i j C O i j j 0 M + N
30 sbv i j C O C O
31 clelsb1 i j j 0 M + N i 0 M + N
32 30 31 anbi12i i j C O i j j 0 M + N C O i 0 M + N
33 29 32 bitri i j C O j 0 M + N C O i 0 M + N
34 nfv j F C i
35 fveq2 j = i F C j = F C i
36 35 eleq1d j = i F C j F C i
37 34 36 sbiev i j F C j F C i
38 28 33 37 3imtr3i C O i 0 M + N F C i
39 22 38 syl C O i 1 M + N F C i
40 0red C O i 1 M + N 0
41 39 40 lenltd C O i 1 M + N F C i 0 ¬ 0 < F C i
42 41 rexbidva C O i 1 M + N F C i 0 i 1 M + N ¬ 0 < F C i
43 rexnal i 1 M + N ¬ 0 < F C i ¬ i 1 M + N 0 < F C i
44 42 43 bitrdi C O i 1 M + N F C i 0 ¬ i 1 M + N 0 < F C i
45 44 pm5.32i C O i 1 M + N F C i 0 C O ¬ i 1 M + N 0 < F C i
46 11 18 45 3bitr4i C O ¬ C E C O i 1 M + N F C i 0
47 7 46 bitri C O E C O i 1 M + N F C i 0