Metamath Proof Explorer


Theorem ballotlemoex

Description: O is a set. (Contributed by Thierry Arnoux, 7-Dec-2016)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O = c 𝒫 1 M + N | c = M
Assertion ballotlemoex O V

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O = c 𝒫 1 M + N | c = M
4 ovex 1 M + N V
5 4 pwex 𝒫 1 M + N V
6 3 5 rabex2 O V