Metamath Proof Explorer


Theorem ballotlemrinv

Description: R is its own inverse : it is an involution. (Contributed by Thierry Arnoux, 10-Apr-2017)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O = c 𝒫 1 M + N | c = M
ballotth.p P = x 𝒫 O x O
ballotth.f F = c O i 1 i c 1 i c
ballotth.e E = c O | i 1 M + N 0 < F c i
ballotth.mgtn N < M
ballotth.i I = c O E sup k 1 M + N | F c k = 0 <
ballotth.s S = c O E i 1 M + N if i I c I c + 1 - i i
ballotth.r R = c O E S c c
Assertion ballotlemrinv R -1 = R

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O = c 𝒫 1 M + N | c = M
4 ballotth.p P = x 𝒫 O x O
5 ballotth.f F = c O i 1 i c 1 i c
6 ballotth.e E = c O | i 1 M + N 0 < F c i
7 ballotth.mgtn N < M
8 ballotth.i I = c O E sup k 1 M + N | F c k = 0 <
9 ballotth.s S = c O E i 1 M + N if i I c I c + 1 - i i
10 ballotth.r R = c O E S c c
11 1 2 3 4 5 6 7 8 9 10 ballotlemrinv0 c O E d = S c c d O E c = S d d
12 1 2 3 4 5 6 7 8 9 10 ballotlemrinv0 d O E c = S d d c O E d = S c c
13 11 12 impbii c O E d = S c c d O E c = S d d
14 13 a1i c O E d = S c c d O E c = S d d
15 14 mptcnv c O E S c c -1 = d O E S d d
16 15 mptru c O E S c c -1 = d O E S d d
17 fveq2 d = c S d = S c
18 id d = c d = c
19 17 18 imaeq12d d = c S d d = S c c
20 19 cbvmptv d O E S d d = c O E S c c
21 16 20 eqtri c O E S c c -1 = c O E S c c
22 10 cnveqi R -1 = c O E S c c -1
23 21 22 10 3eqtr4i R -1 = R