Metamath Proof Explorer


Theorem ballotlemrinv0

Description: Lemma for ballotlemrinv . (Contributed by Thierry Arnoux, 18-Apr-2017)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O = c 𝒫 1 M + N | c = M
ballotth.p P = x 𝒫 O x O
ballotth.f F = c O i 1 i c 1 i c
ballotth.e E = c O | i 1 M + N 0 < F c i
ballotth.mgtn N < M
ballotth.i I = c O E sup k 1 M + N | F c k = 0 <
ballotth.s S = c O E i 1 M + N if i I c I c + 1 - i i
ballotth.r R = c O E S c c
Assertion ballotlemrinv0 C O E D = S C C D O E C = S D D

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O = c 𝒫 1 M + N | c = M
4 ballotth.p P = x 𝒫 O x O
5 ballotth.f F = c O i 1 i c 1 i c
6 ballotth.e E = c O | i 1 M + N 0 < F c i
7 ballotth.mgtn N < M
8 ballotth.i I = c O E sup k 1 M + N | F c k = 0 <
9 ballotth.s S = c O E i 1 M + N if i I c I c + 1 - i i
10 ballotth.r R = c O E S c c
11 1 2 3 4 5 6 7 8 9 10 ballotlemrval C O E R C = S C C
12 11 adantr C O E D = S C C R C = S C C
13 simpr C O E D = S C C D = S C C
14 12 13 eqtr4d C O E D = S C C R C = D
15 1 2 3 4 5 6 7 8 9 10 ballotlemrc C O E R C O E
16 15 adantr C O E D = S C C R C O E
17 14 16 eqeltrrd C O E D = S C C D O E
18 1 2 3 4 5 6 7 8 9 ballotlemsf1o C O E S C : 1 M + N 1-1 onto 1 M + N S C -1 = S C
19 18 simprd C O E S C -1 = S C
20 19 adantr C O E D = S C C S C -1 = S C
21 20 eqcomd C O E D = S C C S C = S C -1
22 21 13 imaeq12d C O E D = S C C S C D = S C -1 S C C
23 simpl C O E D = S C C C O E
24 1 2 3 4 5 6 7 8 9 10 ballotlemirc C O E I R C = I C
25 24 adantr C O E D = S C C I R C = I C
26 14 fveq2d C O E D = S C C I R C = I D
27 25 26 eqtr3d C O E D = S C C I C = I D
28 1 2 3 4 5 6 7 8 9 ballotlemieq C O E D O E I C = I D S C = S D
29 23 17 27 28 syl3anc C O E D = S C C S C = S D
30 29 imaeq1d C O E D = S C C S C D = S D D
31 18 simpld C O E S C : 1 M + N 1-1 onto 1 M + N
32 f1of1 S C : 1 M + N 1-1 onto 1 M + N S C : 1 M + N 1-1 1 M + N
33 23 31 32 3syl C O E D = S C C S C : 1 M + N 1-1 1 M + N
34 eldifi C O E C O
35 1 2 3 ballotlemelo C O C 1 M + N C = M
36 35 simplbi C O C 1 M + N
37 23 34 36 3syl C O E D = S C C C 1 M + N
38 f1imacnv S C : 1 M + N 1-1 1 M + N C 1 M + N S C -1 S C C = C
39 33 37 38 syl2anc C O E D = S C C S C -1 S C C = C
40 22 30 39 3eqtr3rd C O E D = S C C C = S D D
41 17 40 jca C O E D = S C C D O E C = S D D