Metamath Proof Explorer


Theorem ballotlemrv1

Description: Value of R before the tie. (Contributed by Thierry Arnoux, 11-Apr-2017)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O = c 𝒫 1 M + N | c = M
ballotth.p P = x 𝒫 O x O
ballotth.f F = c O i 1 i c 1 i c
ballotth.e E = c O | i 1 M + N 0 < F c i
ballotth.mgtn N < M
ballotth.i I = c O E sup k 1 M + N | F c k = 0 <
ballotth.s S = c O E i 1 M + N if i I c I c + 1 - i i
ballotth.r R = c O E S c c
Assertion ballotlemrv1 C O E J 1 M + N J I C J R C I C + 1 - J C

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O = c 𝒫 1 M + N | c = M
4 ballotth.p P = x 𝒫 O x O
5 ballotth.f F = c O i 1 i c 1 i c
6 ballotth.e E = c O | i 1 M + N 0 < F c i
7 ballotth.mgtn N < M
8 ballotth.i I = c O E sup k 1 M + N | F c k = 0 <
9 ballotth.s S = c O E i 1 M + N if i I c I c + 1 - i i
10 ballotth.r R = c O E S c c
11 1 2 3 4 5 6 7 8 9 10 ballotlemrv C O E J 1 M + N J R C if J I C I C + 1 - J J C
12 11 3adant3 C O E J 1 M + N J I C J R C if J I C I C + 1 - J J C
13 iftrue J I C if J I C I C + 1 - J J = I C + 1 - J
14 13 eleq1d J I C if J I C I C + 1 - J J C I C + 1 - J C
15 14 3ad2ant3 C O E J 1 M + N J I C if J I C I C + 1 - J J C I C + 1 - J C
16 12 15 bitrd C O E J 1 M + N J I C J R C I C + 1 - J C