Metamath Proof Explorer


Theorem ballotlemscr

Description: The image of ( RC ) by ( SC ) . (Contributed by Thierry Arnoux, 21-Apr-2017)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O = c 𝒫 1 M + N | c = M
ballotth.p P = x 𝒫 O x O
ballotth.f F = c O i 1 i c 1 i c
ballotth.e E = c O | i 1 M + N 0 < F c i
ballotth.mgtn N < M
ballotth.i I = c O E sup k 1 M + N | F c k = 0 <
ballotth.s S = c O E i 1 M + N if i I c I c + 1 - i i
ballotth.r R = c O E S c c
Assertion ballotlemscr C O E S C R C = C

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O = c 𝒫 1 M + N | c = M
4 ballotth.p P = x 𝒫 O x O
5 ballotth.f F = c O i 1 i c 1 i c
6 ballotth.e E = c O | i 1 M + N 0 < F c i
7 ballotth.mgtn N < M
8 ballotth.i I = c O E sup k 1 M + N | F c k = 0 <
9 ballotth.s S = c O E i 1 M + N if i I c I c + 1 - i i
10 ballotth.r R = c O E S c c
11 1 2 3 4 5 6 7 8 9 10 ballotlemrval C O E R C = S C C
12 11 imaeq2d C O E S C R C = S C S C C
13 1 2 3 4 5 6 7 8 9 ballotlemsf1o C O E S C : 1 M + N 1-1 onto 1 M + N S C -1 = S C
14 13 simprd C O E S C -1 = S C
15 14 imaeq1d C O E S C -1 S C C = S C S C C
16 13 simpld C O E S C : 1 M + N 1-1 onto 1 M + N
17 f1of1 S C : 1 M + N 1-1 onto 1 M + N S C : 1 M + N 1-1 1 M + N
18 16 17 syl C O E S C : 1 M + N 1-1 1 M + N
19 eldifi C O E C O
20 1 2 3 ballotlemelo C O C 1 M + N C = M
21 20 simplbi C O C 1 M + N
22 19 21 syl C O E C 1 M + N
23 f1imacnv S C : 1 M + N 1-1 1 M + N C 1 M + N S C -1 S C C = C
24 18 22 23 syl2anc C O E S C -1 S C C = C
25 12 15 24 3eqtr2d C O E S C R C = C