Metamath Proof Explorer


Theorem ballotlemsel1i

Description: The range ( 1 ... ( IC ) ) is invariant under ( SC ) . (Contributed by Thierry Arnoux, 28-Apr-2017)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O = c 𝒫 1 M + N | c = M
ballotth.p P = x 𝒫 O x O
ballotth.f F = c O i 1 i c 1 i c
ballotth.e E = c O | i 1 M + N 0 < F c i
ballotth.mgtn N < M
ballotth.i I = c O E sup k 1 M + N | F c k = 0 <
ballotth.s S = c O E i 1 M + N if i I c I c + 1 - i i
Assertion ballotlemsel1i C O E J 1 I C S C J 1 I C

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O = c 𝒫 1 M + N | c = M
4 ballotth.p P = x 𝒫 O x O
5 ballotth.f F = c O i 1 i c 1 i c
6 ballotth.e E = c O | i 1 M + N 0 < F c i
7 ballotth.mgtn N < M
8 ballotth.i I = c O E sup k 1 M + N | F c k = 0 <
9 ballotth.s S = c O E i 1 M + N if i I c I c + 1 - i i
10 1zzd C O E J 1 I C 1
11 1 2 3 4 5 6 7 8 ballotlemiex C O E I C 1 M + N F C I C = 0
12 11 simpld C O E I C 1 M + N
13 12 elfzelzd C O E I C
14 13 adantr C O E J 1 I C I C
15 nnaddcl M N M + N
16 1 2 15 mp2an M + N
17 16 nnzi M + N
18 17 a1i C O E M + N
19 elfzle2 I C 1 M + N I C M + N
20 12 19 syl C O E I C M + N
21 eluz2 M + N I C I C M + N I C M + N
22 13 18 20 21 syl3anbrc C O E M + N I C
23 fzss2 M + N I C 1 I C 1 M + N
24 22 23 syl C O E 1 I C 1 M + N
25 24 sselda C O E J 1 I C J 1 M + N
26 1 2 3 4 5 6 7 8 9 ballotlemsdom C O E J 1 M + N S C J 1 M + N
27 25 26 syldan C O E J 1 I C S C J 1 M + N
28 27 elfzelzd C O E J 1 I C S C J
29 elfzelz J 1 I C J
30 29 adantl C O E J 1 I C J
31 30 zred C O E J 1 I C J
32 14 zred C O E J 1 I C I C
33 1red C O E J 1 I C 1
34 32 33 readdcld C O E J 1 I C I C + 1
35 elfzle2 J 1 I C J I C
36 35 adantl C O E J 1 I C J I C
37 14 zcnd C O E J 1 I C I C
38 1cnd C O E J 1 I C 1
39 37 38 pncand C O E J 1 I C I C + 1 - 1 = I C
40 36 39 breqtrrd C O E J 1 I C J I C + 1 - 1
41 31 34 33 40 lesubd C O E J 1 I C 1 I C + 1 - J
42 1 2 3 4 5 6 7 8 9 ballotlemsv C O E J 1 M + N S C J = if J I C I C + 1 - J J
43 25 42 syldan C O E J 1 I C S C J = if J I C I C + 1 - J J
44 36 iftrued C O E J 1 I C if J I C I C + 1 - J J = I C + 1 - J
45 43 44 eqtrd C O E J 1 I C S C J = I C + 1 - J
46 41 45 breqtrrd C O E J 1 I C 1 S C J
47 13 adantr C O E J 1 M + N I C
48 elfznn J 1 M + N J
49 48 adantl C O E J 1 M + N J
50 47 49 ltesubnnd C O E J 1 M + N I C + 1 - J I C
51 25 50 syldan C O E J 1 I C I C + 1 - J I C
52 45 51 eqbrtrd C O E J 1 I C S C J I C
53 10 14 28 46 52 elfzd C O E J 1 I C S C J 1 I C