Metamath Proof Explorer


Theorem ballotlemsgt1

Description: S maps values less than ( IC ) to values greater than 1. (Contributed by Thierry Arnoux, 28-Apr-2017)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O = c 𝒫 1 M + N | c = M
ballotth.p P = x 𝒫 O x O
ballotth.f F = c O i 1 i c 1 i c
ballotth.e E = c O | i 1 M + N 0 < F c i
ballotth.mgtn N < M
ballotth.i I = c O E sup k 1 M + N | F c k = 0 <
ballotth.s S = c O E i 1 M + N if i I c I c + 1 - i i
Assertion ballotlemsgt1 C O E J 1 M + N J < I C 1 < S C J

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O = c 𝒫 1 M + N | c = M
4 ballotth.p P = x 𝒫 O x O
5 ballotth.f F = c O i 1 i c 1 i c
6 ballotth.e E = c O | i 1 M + N 0 < F c i
7 ballotth.mgtn N < M
8 ballotth.i I = c O E sup k 1 M + N | F c k = 0 <
9 ballotth.s S = c O E i 1 M + N if i I c I c + 1 - i i
10 elfzelz J 1 M + N J
11 10 3ad2ant2 C O E J 1 M + N J < I C J
12 11 zred C O E J 1 M + N J < I C J
13 1 2 3 4 5 6 7 8 ballotlemiex C O E I C 1 M + N F C I C = 0
14 13 simpld C O E I C 1 M + N
15 14 elfzelzd C O E I C
16 15 3ad2ant1 C O E J 1 M + N J < I C I C
17 16 zred C O E J 1 M + N J < I C I C
18 1red C O E J 1 M + N J < I C 1
19 17 18 readdcld C O E J 1 M + N J < I C I C + 1
20 simp3 C O E J 1 M + N J < I C J < I C
21 16 zcnd C O E J 1 M + N J < I C I C
22 1cnd C O E J 1 M + N J < I C 1
23 21 22 pncand C O E J 1 M + N J < I C I C + 1 - 1 = I C
24 20 23 breqtrrd C O E J 1 M + N J < I C J < I C + 1 - 1
25 12 19 18 24 ltsub13d C O E J 1 M + N J < I C 1 < I C + 1 - J
26 1 2 3 4 5 6 7 8 9 ballotlemsv C O E J 1 M + N S C J = if J I C I C + 1 - J J
27 26 3adant3 C O E J 1 M + N J < I C S C J = if J I C I C + 1 - J J
28 12 17 20 ltled C O E J 1 M + N J < I C J I C
29 28 iftrued C O E J 1 M + N J < I C if J I C I C + 1 - J J = I C + 1 - J
30 27 29 eqtrd C O E J 1 M + N J < I C S C J = I C + 1 - J
31 25 30 breqtrrd C O E J 1 M + N J < I C 1 < S C J