Metamath Proof Explorer


Theorem barbariALT

Description: Alternate proof of barbari , shorter but using more axioms. See comment of dariiALT . (Contributed by David A. Wheeler, 27-Aug-2016) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses barbari.maj x φ ψ
barbari.min x χ φ
barbari.e x χ
Assertion barbariALT x χ ψ

Proof

Step Hyp Ref Expression
1 barbari.maj x φ ψ
2 barbari.min x χ φ
3 barbari.e x χ
4 1 2 barbara x χ ψ
5 4 spi χ ψ
6 5 ancli χ χ ψ
7 3 6 eximii x χ ψ