Metamath Proof Explorer


Theorem basellem6

Description: Lemma for basel . The function G goes to zero because it is bounded by 1 / n . (Contributed by Mario Carneiro, 28-Jul-2014)

Ref Expression
Hypothesis basel.g G = n 1 2 n + 1
Assertion basellem6 G 0

Proof

Step Hyp Ref Expression
1 basel.g G = n 1 2 n + 1
2 nnuz = 1
3 1zzd 1
4 ax-1cn 1
5 divcnv 1 n 1 n 0
6 4 5 mp1i n 1 n 0
7 nnex V
8 7 mptex n 1 2 n + 1 V
9 1 8 eqeltri G V
10 9 a1i G V
11 oveq2 n = k 1 n = 1 k
12 eqid n 1 n = n 1 n
13 ovex 1 k V
14 11 12 13 fvmpt k n 1 n k = 1 k
15 14 adantl k n 1 n k = 1 k
16 nnrecre k 1 k
17 16 adantl k 1 k
18 15 17 eqeltrd k n 1 n k
19 oveq2 n = k 2 n = 2 k
20 19 oveq1d n = k 2 n + 1 = 2 k + 1
21 20 oveq2d n = k 1 2 n + 1 = 1 2 k + 1
22 ovex 1 2 k + 1 V
23 21 1 22 fvmpt k G k = 1 2 k + 1
24 23 adantl k G k = 1 2 k + 1
25 2nn 2
26 25 a1i 2
27 nnmulcl 2 k 2 k
28 26 27 sylan k 2 k
29 28 peano2nnd k 2 k + 1
30 29 nnrecred k 1 2 k + 1
31 24 30 eqeltrd k G k
32 nnre k k
33 32 adantl k k
34 28 nnred k 2 k
35 29 nnred k 2 k + 1
36 nnnn0 k k 0
37 36 adantl k k 0
38 nn0addge1 k k 0 k k + k
39 33 37 38 syl2anc k k k + k
40 33 recnd k k
41 40 2timesd k 2 k = k + k
42 39 41 breqtrrd k k 2 k
43 34 lep1d k 2 k 2 k + 1
44 33 34 35 42 43 letrd k k 2 k + 1
45 nngt0 k 0 < k
46 45 adantl k 0 < k
47 29 nngt0d k 0 < 2 k + 1
48 lerec k 0 < k 2 k + 1 0 < 2 k + 1 k 2 k + 1 1 2 k + 1 1 k
49 33 46 35 47 48 syl22anc k k 2 k + 1 1 2 k + 1 1 k
50 44 49 mpbid k 1 2 k + 1 1 k
51 50 24 15 3brtr4d k G k n 1 n k
52 29 nnrpd k 2 k + 1 +
53 52 rpreccld k 1 2 k + 1 +
54 53 rpge0d k 0 1 2 k + 1
55 54 24 breqtrrd k 0 G k
56 2 3 6 10 18 31 51 55 climsqz2 G 0
57 56 mptru G 0