Step |
Hyp |
Ref |
Expression |
1 |
|
basel.g |
|
2 |
|
nnuz |
|
3 |
|
1zzd |
|
4 |
|
ax-1cn |
|
5 |
|
divcnv |
|
6 |
4 5
|
mp1i |
|
7 |
|
nnex |
|
8 |
7
|
mptex |
|
9 |
1 8
|
eqeltri |
|
10 |
9
|
a1i |
|
11 |
|
oveq2 |
|
12 |
|
eqid |
|
13 |
|
ovex |
|
14 |
11 12 13
|
fvmpt |
|
15 |
14
|
adantl |
|
16 |
|
nnrecre |
|
17 |
16
|
adantl |
|
18 |
15 17
|
eqeltrd |
|
19 |
|
oveq2 |
|
20 |
19
|
oveq1d |
|
21 |
20
|
oveq2d |
|
22 |
|
ovex |
|
23 |
21 1 22
|
fvmpt |
|
24 |
23
|
adantl |
|
25 |
|
2nn |
|
26 |
25
|
a1i |
|
27 |
|
nnmulcl |
|
28 |
26 27
|
sylan |
|
29 |
28
|
peano2nnd |
|
30 |
29
|
nnrecred |
|
31 |
24 30
|
eqeltrd |
|
32 |
|
nnre |
|
33 |
32
|
adantl |
|
34 |
28
|
nnred |
|
35 |
29
|
nnred |
|
36 |
|
nnnn0 |
|
37 |
36
|
adantl |
|
38 |
|
nn0addge1 |
|
39 |
33 37 38
|
syl2anc |
|
40 |
33
|
recnd |
|
41 |
40
|
2timesd |
|
42 |
39 41
|
breqtrrd |
|
43 |
34
|
lep1d |
|
44 |
33 34 35 42 43
|
letrd |
|
45 |
|
nngt0 |
|
46 |
45
|
adantl |
|
47 |
29
|
nngt0d |
|
48 |
|
lerec |
|
49 |
33 46 35 47 48
|
syl22anc |
|
50 |
44 49
|
mpbid |
|
51 |
50 24 15
|
3brtr4d |
|
52 |
29
|
nnrpd |
|
53 |
52
|
rpreccld |
|
54 |
53
|
rpge0d |
|
55 |
54 24
|
breqtrrd |
|
56 |
2 3 6 10 18 31 51 55
|
climsqz2 |
|
57 |
56
|
mptru |
|