Metamath Proof Explorer


Theorem basellem7

Description: Lemma for basel . The function 1 + A x. G for any fixed A goes to 1 . (Contributed by Mario Carneiro, 28-Jul-2014)

Ref Expression
Hypotheses basel.g G = n 1 2 n + 1
basellem7.2 A
Assertion basellem7 × 1 + f × A × f G 1

Proof

Step Hyp Ref Expression
1 basel.g G = n 1 2 n + 1
2 basellem7.2 A
3 nnuz = 1
4 1zzd 1
5 ax-1cn 1
6 3 eqimss2i 1
7 nnex V
8 6 7 climconst2 1 1 × 1 1
9 5 4 8 sylancr × 1 1
10 ovexd × 1 + f × A × f G V
11 6 7 climconst2 A 1 × A A
12 2 4 11 sylancr × A A
13 ovexd × A × f G V
14 1 basellem6 G 0
15 14 a1i G 0
16 2 elexi A V
17 16 fconst × A : A
18 2 a1i A
19 18 snssd A
20 fss × A : A A × A :
21 17 19 20 sylancr × A :
22 21 ffvelrnda k × A k
23 2nn 2
24 23 a1i 2
25 nnmulcl 2 n 2 n
26 24 25 sylan n 2 n
27 26 peano2nnd n 2 n + 1
28 27 nnrecred n 1 2 n + 1
29 28 recnd n 1 2 n + 1
30 29 1 fmptd G :
31 30 ffvelrnda k G k
32 21 ffnd × A Fn
33 30 ffnd G Fn
34 7 a1i V
35 inidm =
36 eqidd k × A k = × A k
37 eqidd k G k = G k
38 32 33 34 34 35 36 37 ofval k × A × f G k = × A k G k
39 3 4 12 13 15 22 31 38 climmul × A × f G A 0
40 2 mul01i A 0 = 0
41 39 40 breqtrdi × A × f G 0
42 1ex 1 V
43 42 fconst × 1 : 1
44 5 a1i 1
45 44 snssd 1
46 fss × 1 : 1 1 × 1 :
47 43 45 46 sylancr × 1 :
48 47 ffvelrnda k × 1 k
49 mulcl x y x y
50 49 adantl x y x y
51 50 21 30 34 34 35 off × A × f G :
52 51 ffvelrnda k × A × f G k
53 43 a1i × 1 : 1
54 53 ffnd × 1 Fn
55 51 ffnd × A × f G Fn
56 eqidd k × 1 k = × 1 k
57 eqidd k × A × f G k = × A × f G k
58 54 55 34 34 35 56 57 ofval k × 1 + f × A × f G k = × 1 k + × A × f G k
59 3 4 9 10 41 48 52 58 climadd × 1 + f × A × f G 1 + 0
60 59 mptru × 1 + f × A × f G 1 + 0
61 1p0e1 1 + 0 = 1
62 60 61 breqtri × 1 + f × A × f G 1