Metamath Proof Explorer


Theorem basprssdmsets

Description: The pair of the base index and another index is a subset of the domain of the structure obtained by replacing/adding a slot at the other index in a structure having a base slot. (Contributed by AV, 7-Jun-2021) (Revised by AV, 16-Nov-2021)

Ref Expression
Hypotheses basprssdmsets.s φ S Struct X
basprssdmsets.i φ I U
basprssdmsets.w φ E W
basprssdmsets.b φ Base ndx dom S
Assertion basprssdmsets φ Base ndx I dom S sSet I E

Proof

Step Hyp Ref Expression
1 basprssdmsets.s φ S Struct X
2 basprssdmsets.i φ I U
3 basprssdmsets.w φ E W
4 basprssdmsets.b φ Base ndx dom S
5 4 orcd φ Base ndx dom S Base ndx I
6 elun Base ndx dom S I Base ndx dom S Base ndx I
7 5 6 sylibr φ Base ndx dom S I
8 snidg I U I I
9 2 8 syl φ I I
10 9 olcd φ I dom S I I
11 elun I dom S I I dom S I I
12 10 11 sylibr φ I dom S I
13 7 12 prssd φ Base ndx I dom S I
14 structex S Struct X S V
15 1 14 syl φ S V
16 setsdm S V E W dom S sSet I E = dom S I
17 15 3 16 syl2anc φ dom S sSet I E = dom S I
18 13 17 sseqtrrd φ Base ndx I dom S sSet I E