Metamath Proof Explorer


Theorem bastg

Description: A member of a basis is a subset of the topology it generates. (Contributed by NM, 16-Jul-2006) (Revised by Mario Carneiro, 10-Jan-2015)

Ref Expression
Assertion bastg B V B topGen B

Proof

Step Hyp Ref Expression
1 simpr B V x B x B
2 vex x V
3 2 pwid x 𝒫 x
4 3 a1i B V x B x 𝒫 x
5 1 4 elind B V x B x B 𝒫 x
6 elssuni x B 𝒫 x x B 𝒫 x
7 5 6 syl B V x B x B 𝒫 x
8 7 ex B V x B x B 𝒫 x
9 eltg B V x topGen B x B 𝒫 x
10 8 9 sylibrd B V x B x topGen B
11 10 ssrdv B V B topGen B