Metamath Proof Explorer


Theorem bastop

Description: Two ways to express that a basis is a topology. (Contributed by NM, 18-Jul-2006)

Ref Expression
Assertion bastop B TopBases B Top topGen B = B

Proof

Step Hyp Ref Expression
1 tgtop B Top topGen B = B
2 tgcl B TopBases topGen B Top
3 eleq1 topGen B = B topGen B Top B Top
4 2 3 syl5ibcom B TopBases topGen B = B B Top
5 1 4 impbid2 B TopBases B Top topGen B = B