Metamath Proof Explorer


Theorem bccl

Description: A binomial coefficient, in its extended domain, is a nonnegative integer. (Contributed by NM, 10-Jul-2005) (Revised by Mario Carneiro, 9-Nov-2013)

Ref Expression
Assertion bccl N 0 K ( N K) 0

Proof

Step Hyp Ref Expression
1 oveq1 m = 0 ( m k) = ( 0 k)
2 1 eleq1d m = 0 ( m k) 0 ( 0 k) 0
3 2 ralbidv m = 0 k ( m k) 0 k ( 0 k) 0
4 oveq1 m = n ( m k) = ( n k)
5 4 eleq1d m = n ( m k) 0 ( n k) 0
6 5 ralbidv m = n k ( m k) 0 k ( n k) 0
7 oveq1 m = n + 1 ( m k) = ( n + 1 k)
8 7 eleq1d m = n + 1 ( m k) 0 ( n + 1 k) 0
9 8 ralbidv m = n + 1 k ( m k) 0 k ( n + 1 k) 0
10 oveq1 m = N ( m k) = ( N k)
11 10 eleq1d m = N ( m k) 0 ( N k) 0
12 11 ralbidv m = N k ( m k) 0 k ( N k) 0
13 elfz1eq k 0 0 k = 0
14 13 adantl k k 0 0 k = 0
15 oveq2 k = 0 ( 0 k) = ( 0 0 )
16 0nn0 0 0
17 bcn0 0 0 ( 0 0 ) = 1
18 16 17 ax-mp ( 0 0 ) = 1
19 1nn0 1 0
20 18 19 eqeltri ( 0 0 ) 0
21 15 20 eqeltrdi k = 0 ( 0 k) 0
22 14 21 syl k k 0 0 ( 0 k) 0
23 bcval3 0 0 k ¬ k 0 0 ( 0 k) = 0
24 16 23 mp3an1 k ¬ k 0 0 ( 0 k) = 0
25 24 16 eqeltrdi k ¬ k 0 0 ( 0 k) 0
26 22 25 pm2.61dan k ( 0 k) 0
27 26 rgen k ( 0 k) 0
28 oveq2 k = m ( n k) = ( n m)
29 28 eleq1d k = m ( n k) 0 ( n m) 0
30 29 cbvralvw k ( n k) 0 m ( n m) 0
31 bcpasc n 0 k ( n k) + ( n k 1 ) = ( n + 1 k)
32 31 adantlr n 0 m ( n m) 0 k ( n k) + ( n k 1 ) = ( n + 1 k)
33 oveq2 m = k ( n m) = ( n k)
34 33 eleq1d m = k ( n m) 0 ( n k) 0
35 34 rspccva m ( n m) 0 k ( n k) 0
36 peano2zm k k 1
37 oveq2 m = k 1 ( n m) = ( n k 1 )
38 37 eleq1d m = k 1 ( n m) 0 ( n k 1 ) 0
39 38 rspccva m ( n m) 0 k 1 ( n k 1 ) 0
40 36 39 sylan2 m ( n m) 0 k ( n k 1 ) 0
41 35 40 nn0addcld m ( n m) 0 k ( n k) + ( n k 1 ) 0
42 41 adantll n 0 m ( n m) 0 k ( n k) + ( n k 1 ) 0
43 32 42 eqeltrrd n 0 m ( n m) 0 k ( n + 1 k) 0
44 43 ralrimiva n 0 m ( n m) 0 k ( n + 1 k) 0
45 44 ex n 0 m ( n m) 0 k ( n + 1 k) 0
46 30 45 syl5bi n 0 k ( n k) 0 k ( n + 1 k) 0
47 3 6 9 12 27 46 nn0ind N 0 k ( N k) 0
48 oveq2 k = K ( N k) = ( N K)
49 48 eleq1d k = K ( N k) 0 ( N K) 0
50 49 rspccva k ( N k) 0 K ( N K) 0
51 47 50 sylan N 0 K ( N K) 0