Metamath Proof Explorer


Theorem bccmpl

Description: "Complementing" its second argument doesn't change a binary coefficient. (Contributed by NM, 21-Jun-2005) (Revised by Mario Carneiro, 5-Mar-2014)

Ref Expression
Assertion bccmpl N 0 K ( N K) = ( N N K)

Proof

Step Hyp Ref Expression
1 bcval2 K 0 N ( N K) = N ! N K ! K !
2 fznn0sub2 K 0 N N K 0 N
3 bcval2 N K 0 N ( N N K) = N ! N N K ! N K !
4 2 3 syl K 0 N ( N N K) = N ! N N K ! N K !
5 elfznn0 N K 0 N N K 0
6 5 faccld N K 0 N N K !
7 6 nncnd N K 0 N N K !
8 2 7 syl K 0 N N K !
9 elfznn0 K 0 N K 0
10 9 faccld K 0 N K !
11 10 nncnd K 0 N K !
12 8 11 mulcomd K 0 N N K ! K ! = K ! N K !
13 elfz3nn0 K 0 N N 0
14 elfzelz K 0 N K
15 nn0cn N 0 N
16 zcn K K
17 nncan N K N N K = K
18 15 16 17 syl2an N 0 K N N K = K
19 13 14 18 syl2anc K 0 N N N K = K
20 19 fveq2d K 0 N N N K ! = K !
21 20 oveq1d K 0 N N N K ! N K ! = K ! N K !
22 12 21 eqtr4d K 0 N N K ! K ! = N N K ! N K !
23 22 oveq2d K 0 N N ! N K ! K ! = N ! N N K ! N K !
24 4 23 eqtr4d K 0 N ( N N K) = N ! N K ! K !
25 1 24 eqtr4d K 0 N ( N K) = ( N N K)
26 25 adantl N 0 K K 0 N ( N K) = ( N N K)
27 bcval3 N 0 K ¬ K 0 N ( N K) = 0
28 simp1 N 0 K ¬ K 0 N N 0
29 nn0z N 0 N
30 zsubcl N K N K
31 29 30 sylan N 0 K N K
32 31 3adant3 N 0 K ¬ K 0 N N K
33 fznn0sub2 N K 0 N N N K 0 N
34 18 eleq1d N 0 K N N K 0 N K 0 N
35 33 34 syl5ib N 0 K N K 0 N K 0 N
36 35 con3d N 0 K ¬ K 0 N ¬ N K 0 N
37 36 3impia N 0 K ¬ K 0 N ¬ N K 0 N
38 bcval3 N 0 N K ¬ N K 0 N ( N N K) = 0
39 28 32 37 38 syl3anc N 0 K ¬ K 0 N ( N N K) = 0
40 27 39 eqtr4d N 0 K ¬ K 0 N ( N K) = ( N N K)
41 40 3expa N 0 K ¬ K 0 N ( N K) = ( N N K)
42 26 41 pm2.61dan N 0 K ( N K) = ( N N K)