Metamath Proof Explorer


Theorem bcfallfac

Description: Binomial coefficient in terms of falling factorials. (Contributed by Scott Fenton, 20-Mar-2018)

Ref Expression
Assertion bcfallfac K 0 N ( N K) = N K _ K !

Proof

Step Hyp Ref Expression
1 elfz3nn0 K 0 N N 0
2 1 faccld K 0 N N !
3 2 nncnd K 0 N N !
4 fznn0sub K 0 N N K 0
5 4 faccld K 0 N N K !
6 5 nncnd K 0 N N K !
7 elfznn0 K 0 N K 0
8 7 faccld K 0 N K !
9 8 nncnd K 0 N K !
10 5 nnne0d K 0 N N K ! 0
11 8 nnne0d K 0 N K ! 0
12 3 6 9 10 11 divdiv1d K 0 N N ! N K ! K ! = N ! N K ! K !
13 fallfacval4 K 0 N N K _ = N ! N K !
14 13 oveq1d K 0 N N K _ K ! = N ! N K ! K !
15 bcval2 K 0 N ( N K) = N ! N K ! K !
16 12 14 15 3eqtr4rd K 0 N ( N K) = N K _ K !