Step |
Hyp |
Ref |
Expression |
1 |
|
elfzuz2 |
|
2 |
|
nnuz |
|
3 |
1 2
|
eleqtrrdi |
|
4 |
3
|
nnnn0d |
|
5 |
4
|
faccld |
|
6 |
5
|
nncnd |
|
7 |
|
fznn0sub |
|
8 |
|
nn0p1nn |
|
9 |
7 8
|
syl |
|
10 |
9
|
nncnd |
|
11 |
9
|
nnnn0d |
|
12 |
11
|
faccld |
|
13 |
|
elfznn |
|
14 |
|
nnm1nn0 |
|
15 |
|
faccl |
|
16 |
13 14 15
|
3syl |
|
17 |
12 16
|
nnmulcld |
|
18 |
|
nncn |
|
19 |
|
nnne0 |
|
20 |
18 19
|
jca |
|
21 |
17 20
|
syl |
|
22 |
13
|
nncnd |
|
23 |
13
|
nnne0d |
|
24 |
22 23
|
jca |
|
25 |
|
divmuldiv |
|
26 |
6 10 21 24 25
|
syl22anc |
|
27 |
|
elfzel2 |
|
28 |
27
|
zcnd |
|
29 |
|
1cnd |
|
30 |
28 22 29
|
subsubd |
|
31 |
30
|
fveq2d |
|
32 |
31
|
oveq1d |
|
33 |
32
|
oveq2d |
|
34 |
30
|
oveq1d |
|
35 |
33 34
|
oveq12d |
|
36 |
|
facp1 |
|
37 |
7 36
|
syl |
|
38 |
37
|
eqcomd |
|
39 |
|
facnn2 |
|
40 |
13 39
|
syl |
|
41 |
38 40
|
oveq12d |
|
42 |
7
|
faccld |
|
43 |
42
|
nncnd |
|
44 |
13
|
nnnn0d |
|
45 |
44
|
faccld |
|
46 |
45
|
nncnd |
|
47 |
43 46 10
|
mul32d |
|
48 |
12
|
nncnd |
|
49 |
16
|
nncnd |
|
50 |
48 49 22
|
mulassd |
|
51 |
41 47 50
|
3eqtr4d |
|
52 |
51
|
oveq2d |
|
53 |
26 35 52
|
3eqtr4d |
|
54 |
6 10
|
mulcomd |
|
55 |
42 45
|
nnmulcld |
|
56 |
55
|
nncnd |
|
57 |
56 10
|
mulcomd |
|
58 |
54 57
|
oveq12d |
|
59 |
55
|
nnne0d |
|
60 |
9
|
nnne0d |
|
61 |
6 56 10 59 60
|
divcan5d |
|
62 |
53 58 61
|
3eqtrrd |
|
63 |
|
fz1ssfz0 |
|
64 |
63
|
sseli |
|
65 |
|
bcval2 |
|
66 |
64 65
|
syl |
|
67 |
|
ax-1cn |
|
68 |
|
npcan |
|
69 |
28 67 68
|
sylancl |
|
70 |
|
peano2zm |
|
71 |
|
uzid |
|
72 |
|
peano2uz |
|
73 |
27 70 71 72
|
4syl |
|
74 |
69 73
|
eqeltrrd |
|
75 |
|
fzss2 |
|
76 |
74 75
|
syl |
|
77 |
|
elfzmlbm |
|
78 |
76 77
|
sseldd |
|
79 |
|
bcval2 |
|
80 |
78 79
|
syl |
|
81 |
80
|
oveq1d |
|
82 |
62 66 81
|
3eqtr4d |
|