Metamath Proof Explorer


Theorem bcm1k

Description: The proportion of one binomial coefficient to another with K decreased by 1. (Contributed by Mario Carneiro, 10-Mar-2014)

Ref Expression
Assertion bcm1k K 1 N ( N K) = ( N K 1 ) N K 1 K

Proof

Step Hyp Ref Expression
1 elfzuz2 K 1 N N 1
2 nnuz = 1
3 1 2 eleqtrrdi K 1 N N
4 3 nnnn0d K 1 N N 0
5 4 faccld K 1 N N !
6 5 nncnd K 1 N N !
7 fznn0sub K 1 N N K 0
8 nn0p1nn N K 0 N - K + 1
9 7 8 syl K 1 N N - K + 1
10 9 nncnd K 1 N N - K + 1
11 9 nnnn0d K 1 N N - K + 1 0
12 11 faccld K 1 N N - K + 1 !
13 elfznn K 1 N K
14 nnm1nn0 K K 1 0
15 faccl K 1 0 K 1 !
16 13 14 15 3syl K 1 N K 1 !
17 12 16 nnmulcld K 1 N N - K + 1 ! K 1 !
18 nncn N - K + 1 ! K 1 ! N - K + 1 ! K 1 !
19 nnne0 N - K + 1 ! K 1 ! N - K + 1 ! K 1 ! 0
20 18 19 jca N - K + 1 ! K 1 ! N - K + 1 ! K 1 ! N - K + 1 ! K 1 ! 0
21 17 20 syl K 1 N N - K + 1 ! K 1 ! N - K + 1 ! K 1 ! 0
22 13 nncnd K 1 N K
23 13 nnne0d K 1 N K 0
24 22 23 jca K 1 N K K 0
25 divmuldiv N ! N - K + 1 N - K + 1 ! K 1 ! N - K + 1 ! K 1 ! 0 K K 0 N ! N - K + 1 ! K 1 ! N - K + 1 K = N ! N - K + 1 N - K + 1 ! K 1 ! K
26 6 10 21 24 25 syl22anc K 1 N N ! N - K + 1 ! K 1 ! N - K + 1 K = N ! N - K + 1 N - K + 1 ! K 1 ! K
27 elfzel2 K 1 N N
28 27 zcnd K 1 N N
29 1cnd K 1 N 1
30 28 22 29 subsubd K 1 N N K 1 = N - K + 1
31 30 fveq2d K 1 N N K 1 ! = N - K + 1 !
32 31 oveq1d K 1 N N K 1 ! K 1 ! = N - K + 1 ! K 1 !
33 32 oveq2d K 1 N N ! N K 1 ! K 1 ! = N ! N - K + 1 ! K 1 !
34 30 oveq1d K 1 N N K 1 K = N - K + 1 K
35 33 34 oveq12d K 1 N N ! N K 1 ! K 1 ! N K 1 K = N ! N - K + 1 ! K 1 ! N - K + 1 K
36 facp1 N K 0 N - K + 1 ! = N K ! N - K + 1
37 7 36 syl K 1 N N - K + 1 ! = N K ! N - K + 1
38 37 eqcomd K 1 N N K ! N - K + 1 = N - K + 1 !
39 facnn2 K K ! = K 1 ! K
40 13 39 syl K 1 N K ! = K 1 ! K
41 38 40 oveq12d K 1 N N K ! N - K + 1 K ! = N - K + 1 ! K 1 ! K
42 7 faccld K 1 N N K !
43 42 nncnd K 1 N N K !
44 13 nnnn0d K 1 N K 0
45 44 faccld K 1 N K !
46 45 nncnd K 1 N K !
47 43 46 10 mul32d K 1 N N K ! K ! N - K + 1 = N K ! N - K + 1 K !
48 12 nncnd K 1 N N - K + 1 !
49 16 nncnd K 1 N K 1 !
50 48 49 22 mulassd K 1 N N - K + 1 ! K 1 ! K = N - K + 1 ! K 1 ! K
51 41 47 50 3eqtr4d K 1 N N K ! K ! N - K + 1 = N - K + 1 ! K 1 ! K
52 51 oveq2d K 1 N N ! N - K + 1 N K ! K ! N - K + 1 = N ! N - K + 1 N - K + 1 ! K 1 ! K
53 26 35 52 3eqtr4d K 1 N N ! N K 1 ! K 1 ! N K 1 K = N ! N - K + 1 N K ! K ! N - K + 1
54 6 10 mulcomd K 1 N N ! N - K + 1 = N - K + 1 N !
55 42 45 nnmulcld K 1 N N K ! K !
56 55 nncnd K 1 N N K ! K !
57 56 10 mulcomd K 1 N N K ! K ! N - K + 1 = N - K + 1 N K ! K !
58 54 57 oveq12d K 1 N N ! N - K + 1 N K ! K ! N - K + 1 = N - K + 1 N ! N - K + 1 N K ! K !
59 55 nnne0d K 1 N N K ! K ! 0
60 9 nnne0d K 1 N N - K + 1 0
61 6 56 10 59 60 divcan5d K 1 N N - K + 1 N ! N - K + 1 N K ! K ! = N ! N K ! K !
62 53 58 61 3eqtrrd K 1 N N ! N K ! K ! = N ! N K 1 ! K 1 ! N K 1 K
63 fz1ssfz0 1 N 0 N
64 63 sseli K 1 N K 0 N
65 bcval2 K 0 N ( N K) = N ! N K ! K !
66 64 65 syl K 1 N ( N K) = N ! N K ! K !
67 ax-1cn 1
68 npcan N 1 N - 1 + 1 = N
69 28 67 68 sylancl K 1 N N - 1 + 1 = N
70 peano2zm N N 1
71 uzid N 1 N 1 N 1
72 peano2uz N 1 N 1 N - 1 + 1 N 1
73 27 70 71 72 4syl K 1 N N - 1 + 1 N 1
74 69 73 eqeltrrd K 1 N N N 1
75 fzss2 N N 1 0 N 1 0 N
76 74 75 syl K 1 N 0 N 1 0 N
77 elfzmlbm K 1 N K 1 0 N 1
78 76 77 sseldd K 1 N K 1 0 N
79 bcval2 K 1 0 N ( N K 1 ) = N ! N K 1 ! K 1 !
80 78 79 syl K 1 N ( N K 1 ) = N ! N K 1 ! K 1 !
81 80 oveq1d K 1 N ( N K 1 ) N K 1 K = N ! N K 1 ! K 1 ! N K 1 K
82 62 66 81 3eqtr4d K 1 N ( N K) = ( N K 1 ) N K 1 K