Metamath Proof Explorer


Theorem bcm1n

Description: The proportion of one binomial coefficient to another with N decreased by 1. (Contributed by Thierry Arnoux, 9-Nov-2016)

Ref Expression
Assertion bcm1n K 0 N 1 N ( N 1 K) ( N K) = N K N

Proof

Step Hyp Ref Expression
1 bcp1n K 0 N 1 ( N - 1 + 1 K) = ( N 1 K) N - 1 + 1 N 1 + 1 - K
2 nnz N N
3 2 zcnd N N
4 3 adantl K 0 N 1 N N
5 1cnd K 0 N 1 N 1
6 4 5 npcand K 0 N 1 N N - 1 + 1 = N
7 6 oveq1d K 0 N 1 N ( N - 1 + 1 K) = ( N K)
8 6 oveq1d K 0 N 1 N N 1 + 1 - K = N K
9 6 8 oveq12d K 0 N 1 N N - 1 + 1 N 1 + 1 - K = N N K
10 9 oveq2d K 0 N 1 N ( N 1 K) N - 1 + 1 N 1 + 1 - K = ( N 1 K) N N K
11 7 10 eqeq12d K 0 N 1 N ( N - 1 + 1 K) = ( N 1 K) N - 1 + 1 N 1 + 1 - K ( N K) = ( N 1 K) N N K
12 1 11 syl5ib K 0 N 1 N K 0 N 1 ( N K) = ( N 1 K) N N K
13 12 3impia K 0 N 1 N K 0 N 1 ( N K) = ( N 1 K) N N K
14 13 3anidm13 K 0 N 1 N ( N K) = ( N 1 K) N N K
15 elfznn0 K 0 N 1 K 0
16 15 adantr K 0 N 1 N K 0
17 simpr K 0 N 1 N N
18 17 nnnn0d K 0 N 1 N N 0
19 elfzelz K 0 N 1 K
20 19 adantr K 0 N 1 N K
21 20 zred K 0 N 1 N K
22 2 adantl K 0 N 1 N N
23 22 zred K 0 N 1 N N
24 elfzle2 K 0 N 1 K N 1
25 24 adantr K 0 N 1 N K N 1
26 zltlem1 K N K < N K N 1
27 19 2 26 syl2an K 0 N 1 N K < N K N 1
28 25 27 mpbird K 0 N 1 N K < N
29 21 23 28 ltled K 0 N 1 N K N
30 elfz2nn0 K 0 N K 0 N 0 K N
31 16 18 29 30 syl3anbrc K 0 N 1 N K 0 N
32 bcrpcl K 0 N ( N K) +
33 31 32 syl K 0 N 1 N ( N K) +
34 33 rpcnd K 0 N 1 N ( N K)
35 19 zcnd K 0 N 1 K
36 35 adantr K 0 N 1 N K
37 4 36 subcld K 0 N 1 N N K
38 36 4 negsubdi2d K 0 N 1 N K N = N K
39 21 23 resubcld K 0 N 1 N K N
40 39 recnd K 0 N 1 N K N
41 4 addid2d K 0 N 1 N 0 + N = N
42 28 41 breqtrrd K 0 N 1 N K < 0 + N
43 0red K 0 N 1 N 0
44 21 23 43 ltsubaddd K 0 N 1 N K N < 0 K < 0 + N
45 42 44 mpbird K 0 N 1 N K N < 0
46 45 lt0ne0d K 0 N 1 N K N 0
47 40 46 negne0d K 0 N 1 N K N 0
48 38 47 eqnetrrd K 0 N 1 N N K 0
49 4 37 48 divcld K 0 N 1 N N N K
50 bcrpcl K 0 N 1 ( N 1 K) +
51 50 adantr K 0 N 1 N ( N 1 K) +
52 51 rpcnne0d K 0 N 1 N ( N 1 K) ( N 1 K) 0
53 divmul2 ( N K) N N K ( N 1 K) ( N 1 K) 0 ( N K) ( N 1 K) = N N K ( N K) = ( N 1 K) N N K
54 34 49 52 53 syl3anc K 0 N 1 N ( N K) ( N 1 K) = N N K ( N K) = ( N 1 K) N N K
55 14 54 mpbird K 0 N 1 N ( N K) ( N 1 K) = N N K
56 55 oveq2d K 0 N 1 N 1 ( N K) ( N 1 K) = 1 N N K
57 51 rpcnd K 0 N 1 N ( N 1 K)
58 bccl2 K 0 N ( N K)
59 31 58 syl K 0 N 1 N ( N K)
60 59 nnne0d K 0 N 1 N ( N K) 0
61 bccl2 K 0 N 1 ( N 1 K)
62 61 nnne0d K 0 N 1 ( N 1 K) 0
63 62 adantr K 0 N 1 N ( N 1 K) 0
64 34 57 60 63 recdivd K 0 N 1 N 1 ( N K) ( N 1 K) = ( N 1 K) ( N K)
65 17 nnne0d K 0 N 1 N N 0
66 4 37 65 48 recdivd K 0 N 1 N 1 N N K = N K N
67 56 64 66 3eqtr3d K 0 N 1 N ( N 1 K) ( N K) = N K N