Metamath Proof Explorer


Theorem bcmax

Description: The binomial coefficient takes its maximum value at the center. (Contributed by Mario Carneiro, 5-Mar-2014)

Ref Expression
Assertion bcmax N 0 K ( 2 N K) ( 2 N N)

Proof

Step Hyp Ref Expression
1 2nn0 2 0
2 simpll N 0 K N K N 0
3 nn0mulcl 2 0 N 0 2 N 0
4 1 2 3 sylancr N 0 K N K 2 N 0
5 simpr N 0 K N K N K
6 nn0re N 0 N
7 6 leidd N 0 N N
8 nn0cn N 0 N
9 2cn 2
10 2ne0 2 0
11 divcan3 N 2 2 0 2 N 2 = N
12 9 10 11 mp3an23 N 2 N 2 = N
13 8 12 syl N 0 2 N 2 = N
14 7 13 breqtrrd N 0 N 2 N 2
15 2 14 syl N 0 K N K N 2 N 2
16 bcmono 2 N 0 N K N 2 N 2 ( 2 N K) ( 2 N N)
17 4 5 15 16 syl3anc N 0 K N K ( 2 N K) ( 2 N N)
18 simpll N 0 K K N N 0
19 1 18 3 sylancr N 0 K K N 2 N 0
20 simplr N 0 K K N K
21 bccmpl 2 N 0 K ( 2 N K) = ( 2 N 2 N K)
22 19 20 21 syl2anc N 0 K K N ( 2 N K) = ( 2 N 2 N K)
23 18 nn0red N 0 K K N N
24 23 recnd N 0 K K N N
25 24 2timesd N 0 K K N 2 N = N + N
26 20 zred N 0 K K N K
27 eluzle K N N K
28 27 adantl N 0 K K N N K
29 23 26 23 28 leadd2dd N 0 K K N N + N N + K
30 25 29 eqbrtrd N 0 K K N 2 N N + K
31 19 nn0red N 0 K K N 2 N
32 31 26 23 lesubaddd N 0 K K N 2 N K N 2 N N + K
33 30 32 mpbird N 0 K K N 2 N K N
34 19 nn0zd N 0 K K N 2 N
35 34 20 zsubcld N 0 K K N 2 N K
36 18 nn0zd N 0 K K N N
37 eluz 2 N K N N 2 N K 2 N K N
38 35 36 37 syl2anc N 0 K K N N 2 N K 2 N K N
39 33 38 mpbird N 0 K K N N 2 N K
40 18 14 syl N 0 K K N N 2 N 2
41 bcmono 2 N 0 N 2 N K N 2 N 2 ( 2 N 2 N K) ( 2 N N)
42 19 39 40 41 syl3anc N 0 K K N ( 2 N 2 N K) ( 2 N N)
43 22 42 eqbrtrd N 0 K K N ( 2 N K) ( 2 N N)
44 simpr N 0 K K
45 nn0z N 0 N
46 45 adantr N 0 K N
47 uztric K N N K K N
48 44 46 47 syl2anc N 0 K N K K N
49 17 43 48 mpjaodan N 0 K ( 2 N K) ( 2 N N)