Metamath Proof Explorer


Theorem bcmono

Description: The binomial coefficient is monotone in its second argument, up to the midway point. (Contributed by Mario Carneiro, 5-Mar-2014)

Ref Expression
Assertion bcmono N 0 B A B N 2 ( N A) ( N B)

Proof

Step Hyp Ref Expression
1 simpl2 N 0 B A B N 2 0 A B A
2 simpl1 N 0 B A B N 2 0 A N 0
3 eluzel2 B A A
4 3 3ad2ant2 N 0 B A B N 2 A
5 4 anim1i N 0 B A B N 2 0 A A 0 A
6 elnn0z A 0 A 0 A
7 5 6 sylibr N 0 B A B N 2 0 A A 0
8 simpl3 N 0 B A B N 2 0 A B N 2
9 breq1 x = A x N 2 A N 2
10 oveq2 x = A ( N x) = ( N A)
11 10 breq2d x = A ( N A) ( N x) ( N A) ( N A)
12 9 11 imbi12d x = A x N 2 ( N A) ( N x) A N 2 ( N A) ( N A)
13 12 imbi2d x = A N 0 A 0 x N 2 ( N A) ( N x) N 0 A 0 A N 2 ( N A) ( N A)
14 breq1 x = k x N 2 k N 2
15 oveq2 x = k ( N x) = ( N k)
16 15 breq2d x = k ( N A) ( N x) ( N A) ( N k)
17 14 16 imbi12d x = k x N 2 ( N A) ( N x) k N 2 ( N A) ( N k)
18 17 imbi2d x = k N 0 A 0 x N 2 ( N A) ( N x) N 0 A 0 k N 2 ( N A) ( N k)
19 breq1 x = k + 1 x N 2 k + 1 N 2
20 oveq2 x = k + 1 ( N x) = ( N k + 1 )
21 20 breq2d x = k + 1 ( N A) ( N x) ( N A) ( N k + 1 )
22 19 21 imbi12d x = k + 1 x N 2 ( N A) ( N x) k + 1 N 2 ( N A) ( N k + 1 )
23 22 imbi2d x = k + 1 N 0 A 0 x N 2 ( N A) ( N x) N 0 A 0 k + 1 N 2 ( N A) ( N k + 1 )
24 breq1 x = B x N 2 B N 2
25 oveq2 x = B ( N x) = ( N B)
26 25 breq2d x = B ( N A) ( N x) ( N A) ( N B)
27 24 26 imbi12d x = B x N 2 ( N A) ( N x) B N 2 ( N A) ( N B)
28 27 imbi2d x = B N 0 A 0 x N 2 ( N A) ( N x) N 0 A 0 B N 2 ( N A) ( N B)
29 bccl N 0 A ( N A) 0
30 29 nn0red N 0 A ( N A)
31 30 leidd N 0 A ( N A) ( N A)
32 31 a1d N 0 A A N 2 ( N A) ( N A)
33 32 expcom A N 0 A N 2 ( N A) ( N A)
34 33 adantrd A N 0 A 0 A N 2 ( N A) ( N A)
35 eluzelz k A k
36 35 3ad2ant1 k A N 0 A 0 k
37 36 zred k A N 0 A 0 k
38 37 lep1d k A N 0 A 0 k k + 1
39 peano2re k k + 1
40 37 39 syl k A N 0 A 0 k + 1
41 nn0re N 0 N
42 41 3ad2ant2 k A N 0 A 0 N
43 42 rehalfcld k A N 0 A 0 N 2
44 letr k k + 1 N 2 k k + 1 k + 1 N 2 k N 2
45 37 40 43 44 syl3anc k A N 0 A 0 k k + 1 k + 1 N 2 k N 2
46 38 45 mpand k A N 0 A 0 k + 1 N 2 k N 2
47 46 imim1d k A N 0 A 0 k N 2 ( N A) ( N k) k + 1 N 2 ( N A) ( N k)
48 eluznn0 A 0 k A k 0
49 41 3ad2ant2 k 0 N 0 k + 1 N 2 N
50 nn0re k 0 k
51 50 3ad2ant1 k 0 N 0 k + 1 N 2 k
52 nn0p1nn k 0 k + 1
53 52 3ad2ant1 k 0 N 0 k + 1 N 2 k + 1
54 53 nnnn0d k 0 N 0 k + 1 N 2 k + 1 0
55 54 nn0red k 0 N 0 k + 1 N 2 k + 1
56 53 nncnd k 0 N 0 k + 1 N 2 k + 1
57 56 2timesd k 0 N 0 k + 1 N 2 2 k + 1 = k + 1 + k + 1
58 simp3 k 0 N 0 k + 1 N 2 k + 1 N 2
59 2re 2
60 2pos 0 < 2
61 59 60 pm3.2i 2 0 < 2
62 61 a1i k 0 N 0 k + 1 N 2 2 0 < 2
63 lemuldiv2 k + 1 N 2 0 < 2 2 k + 1 N k + 1 N 2
64 55 49 62 63 syl3anc k 0 N 0 k + 1 N 2 2 k + 1 N k + 1 N 2
65 58 64 mpbird k 0 N 0 k + 1 N 2 2 k + 1 N
66 57 65 eqbrtrrd k 0 N 0 k + 1 N 2 k + 1 + k + 1 N
67 51 lep1d k 0 N 0 k + 1 N 2 k k + 1
68 49 51 55 55 66 67 lesub3d k 0 N 0 k + 1 N 2 k + 1 N k
69 nnre k + 1 k + 1
70 nngt0 k + 1 0 < k + 1
71 69 70 jca k + 1 k + 1 0 < k + 1
72 53 71 syl k 0 N 0 k + 1 N 2 k + 1 0 < k + 1
73 nn0z N 0 N
74 73 3ad2ant2 k 0 N 0 k + 1 N 2 N
75 nn0z k 0 k
76 75 3ad2ant1 k 0 N 0 k + 1 N 2 k
77 74 76 zsubcld k 0 N 0 k + 1 N 2 N k
78 49 rehalfcld k 0 N 0 k + 1 N 2 N 2
79 49 59 jctir k 0 N 0 k + 1 N 2 N 2
80 nn0ge0 N 0 0 N
81 80 3ad2ant2 k 0 N 0 k + 1 N 2 0 N
82 1le2 1 2
83 81 82 jctir k 0 N 0 k + 1 N 2 0 N 1 2
84 lemulge12 N 2 0 N 1 2 N 2 N
85 79 83 84 syl2anc k 0 N 0 k + 1 N 2 N 2 N
86 ledivmul N N 2 0 < 2 N 2 N N 2 N
87 49 49 62 86 syl3anc k 0 N 0 k + 1 N 2 N 2 N N 2 N
88 85 87 mpbird k 0 N 0 k + 1 N 2 N 2 N
89 55 78 49 58 88 letrd k 0 N 0 k + 1 N 2 k + 1 N
90 1red k 0 N 0 k + 1 N 2 1
91 51 90 49 leaddsub2d k 0 N 0 k + 1 N 2 k + 1 N 1 N k
92 89 91 mpbid k 0 N 0 k + 1 N 2 1 N k
93 elnnz1 N k N k 1 N k
94 77 92 93 sylanbrc k 0 N 0 k + 1 N 2 N k
95 nnre N k N k
96 nngt0 N k 0 < N k
97 95 96 jca N k N k 0 < N k
98 94 97 syl k 0 N 0 k + 1 N 2 N k 0 < N k
99 faccl N 0 N !
100 99 3ad2ant2 k 0 N 0 k + 1 N 2 N !
101 nnm1nn0 N k N - k - 1 0
102 faccl N - k - 1 0 N - k - 1 !
103 94 101 102 3syl k 0 N 0 k + 1 N 2 N - k - 1 !
104 faccl k 0 k !
105 104 3ad2ant1 k 0 N 0 k + 1 N 2 k !
106 103 105 nnmulcld k 0 N 0 k + 1 N 2 N - k - 1 ! k !
107 nnrp N ! N ! +
108 nnrp N - k - 1 ! k ! N - k - 1 ! k ! +
109 rpdivcl N ! + N - k - 1 ! k ! + N ! N - k - 1 ! k ! +
110 107 108 109 syl2an N ! N - k - 1 ! k ! N ! N - k - 1 ! k ! +
111 100 106 110 syl2anc k 0 N 0 k + 1 N 2 N ! N - k - 1 ! k ! +
112 111 rpregt0d k 0 N 0 k + 1 N 2 N ! N - k - 1 ! k ! 0 < N ! N - k - 1 ! k !
113 lediv2 k + 1 0 < k + 1 N k 0 < N k N ! N - k - 1 ! k ! 0 < N ! N - k - 1 ! k ! k + 1 N k N ! N - k - 1 ! k ! N k N ! N - k - 1 ! k ! k + 1
114 72 98 112 113 syl3anc k 0 N 0 k + 1 N 2 k + 1 N k N ! N - k - 1 ! k ! N k N ! N - k - 1 ! k ! k + 1
115 68 114 mpbid k 0 N 0 k + 1 N 2 N ! N - k - 1 ! k ! N k N ! N - k - 1 ! k ! k + 1
116 facnn2 N k N k ! = N - k - 1 ! N k
117 94 116 syl k 0 N 0 k + 1 N 2 N k ! = N - k - 1 ! N k
118 117 oveq1d k 0 N 0 k + 1 N 2 N k ! k ! = N - k - 1 ! N k k !
119 103 nncnd k 0 N 0 k + 1 N 2 N - k - 1 !
120 105 nncnd k 0 N 0 k + 1 N 2 k !
121 77 zcnd k 0 N 0 k + 1 N 2 N k
122 119 120 121 mul32d k 0 N 0 k + 1 N 2 N - k - 1 ! k ! N k = N - k - 1 ! N k k !
123 118 122 eqtr4d k 0 N 0 k + 1 N 2 N k ! k ! = N - k - 1 ! k ! N k
124 123 oveq2d k 0 N 0 k + 1 N 2 N ! N k ! k ! = N ! N - k - 1 ! k ! N k
125 0zd k 0 N 0 k + 1 N 2 0
126 nn0ge0 k 0 0 k
127 126 3ad2ant1 k 0 N 0 k + 1 N 2 0 k
128 51 55 49 67 89 letrd k 0 N 0 k + 1 N 2 k N
129 125 74 76 127 128 elfzd k 0 N 0 k + 1 N 2 k 0 N
130 bcval2 k 0 N ( N k) = N ! N k ! k !
131 129 130 syl k 0 N 0 k + 1 N 2 ( N k) = N ! N k ! k !
132 100 nncnd k 0 N 0 k + 1 N 2 N !
133 106 nncnd k 0 N 0 k + 1 N 2 N - k - 1 ! k !
134 106 nnne0d k 0 N 0 k + 1 N 2 N - k - 1 ! k ! 0
135 94 nnne0d k 0 N 0 k + 1 N 2 N k 0
136 132 133 121 134 135 divdiv1d k 0 N 0 k + 1 N 2 N ! N - k - 1 ! k ! N k = N ! N - k - 1 ! k ! N k
137 124 131 136 3eqtr4d k 0 N 0 k + 1 N 2 ( N k) = N ! N - k - 1 ! k ! N k
138 nn0cn N 0 N
139 138 3ad2ant2 k 0 N 0 k + 1 N 2 N
140 nn0cn k 0 k
141 140 3ad2ant1 k 0 N 0 k + 1 N 2 k
142 1cnd k 0 N 0 k + 1 N 2 1
143 139 141 142 subsub4d k 0 N 0 k + 1 N 2 N - k - 1 = N k + 1
144 143 eqcomd k 0 N 0 k + 1 N 2 N k + 1 = N - k - 1
145 144 fveq2d k 0 N 0 k + 1 N 2 N k + 1 ! = N - k - 1 !
146 facp1 k 0 k + 1 ! = k ! k + 1
147 146 3ad2ant1 k 0 N 0 k + 1 N 2 k + 1 ! = k ! k + 1
148 145 147 oveq12d k 0 N 0 k + 1 N 2 N k + 1 ! k + 1 ! = N - k - 1 ! k ! k + 1
149 119 120 56 mulassd k 0 N 0 k + 1 N 2 N - k - 1 ! k ! k + 1 = N - k - 1 ! k ! k + 1
150 148 149 eqtr4d k 0 N 0 k + 1 N 2 N k + 1 ! k + 1 ! = N - k - 1 ! k ! k + 1
151 150 oveq2d k 0 N 0 k + 1 N 2 N ! N k + 1 ! k + 1 ! = N ! N - k - 1 ! k ! k + 1
152 53 nnzd k 0 N 0 k + 1 N 2 k + 1
153 54 nn0ge0d k 0 N 0 k + 1 N 2 0 k + 1
154 125 74 152 153 89 elfzd k 0 N 0 k + 1 N 2 k + 1 0 N
155 bcval2 k + 1 0 N ( N k + 1 ) = N ! N k + 1 ! k + 1 !
156 154 155 syl k 0 N 0 k + 1 N 2 ( N k + 1 ) = N ! N k + 1 ! k + 1 !
157 53 nnne0d k 0 N 0 k + 1 N 2 k + 1 0
158 132 133 56 134 157 divdiv1d k 0 N 0 k + 1 N 2 N ! N - k - 1 ! k ! k + 1 = N ! N - k - 1 ! k ! k + 1
159 151 156 158 3eqtr4d k 0 N 0 k + 1 N 2 ( N k + 1 ) = N ! N - k - 1 ! k ! k + 1
160 115 137 159 3brtr4d k 0 N 0 k + 1 N 2 ( N k) ( N k + 1 )
161 160 3exp k 0 N 0 k + 1 N 2 ( N k) ( N k + 1 )
162 48 161 syl A 0 k A N 0 k + 1 N 2 ( N k) ( N k + 1 )
163 162 3impia A 0 k A N 0 k + 1 N 2 ( N k) ( N k + 1 )
164 163 3coml k A N 0 A 0 k + 1 N 2 ( N k) ( N k + 1 )
165 simp2 k A N 0 A 0 N 0
166 nn0z A 0 A
167 166 3ad2ant3 k A N 0 A 0 A
168 165 167 29 syl2anc k A N 0 A 0 ( N A) 0
169 168 nn0red k A N 0 A 0 ( N A)
170 bccl N 0 k ( N k) 0
171 165 36 170 syl2anc k A N 0 A 0 ( N k) 0
172 171 nn0red k A N 0 A 0 ( N k)
173 36 peano2zd k A N 0 A 0 k + 1
174 bccl N 0 k + 1 ( N k + 1 ) 0
175 165 173 174 syl2anc k A N 0 A 0 ( N k + 1 ) 0
176 175 nn0red k A N 0 A 0 ( N k + 1 )
177 letr ( N A) ( N k) ( N k + 1 ) ( N A) ( N k) ( N k) ( N k + 1 ) ( N A) ( N k + 1 )
178 169 172 176 177 syl3anc k A N 0 A 0 ( N A) ( N k) ( N k) ( N k + 1 ) ( N A) ( N k + 1 )
179 178 expcomd k A N 0 A 0 ( N k) ( N k + 1 ) ( N A) ( N k) ( N A) ( N k + 1 )
180 164 179 syld k A N 0 A 0 k + 1 N 2 ( N A) ( N k) ( N A) ( N k + 1 )
181 180 a2d k A N 0 A 0 k + 1 N 2 ( N A) ( N k) k + 1 N 2 ( N A) ( N k + 1 )
182 47 181 syld k A N 0 A 0 k N 2 ( N A) ( N k) k + 1 N 2 ( N A) ( N k + 1 )
183 182 3expib k A N 0 A 0 k N 2 ( N A) ( N k) k + 1 N 2 ( N A) ( N k + 1 )
184 183 a2d k A N 0 A 0 k N 2 ( N A) ( N k) N 0 A 0 k + 1 N 2 ( N A) ( N k + 1 )
185 13 18 23 28 34 184 uzind4 B A N 0 A 0 B N 2 ( N A) ( N B)
186 185 3imp B A N 0 A 0 B N 2 ( N A) ( N B)
187 1 2 7 8 186 syl121anc N 0 B A B N 2 0 A ( N A) ( N B)
188 simpl1 N 0 B A B N 2 A < 0 N 0
189 4 adantr N 0 B A B N 2 A < 0 A
190 animorrl N 0 B A B N 2 A < 0 A < 0 N < A
191 bcval4 N 0 A A < 0 N < A ( N A) = 0
192 188 189 190 191 syl3anc N 0 B A B N 2 A < 0 ( N A) = 0
193 simpl2 N 0 B A B N 2 A < 0 B A
194 eluzelz B A B
195 193 194 syl N 0 B A B N 2 A < 0 B
196 bccl N 0 B ( N B) 0
197 188 195 196 syl2anc N 0 B A B N 2 A < 0 ( N B) 0
198 197 nn0ge0d N 0 B A B N 2 A < 0 0 ( N B)
199 192 198 eqbrtrd N 0 B A B N 2 A < 0 ( N A) ( N B)
200 0re 0
201 4 zred N 0 B A B N 2 A
202 lelttric 0 A 0 A A < 0
203 200 201 202 sylancr N 0 B A B N 2 0 A A < 0
204 187 199 203 mpjaodan N 0 B A B N 2 ( N A) ( N B)