Metamath Proof Explorer


Theorem bcn0

Description: N choose 0 is 1. Remark in Gleason p. 296. (Contributed by NM, 17-Jun-2005) (Revised by Mario Carneiro, 8-Nov-2013)

Ref Expression
Assertion bcn0 N 0 ( N 0 ) = 1

Proof

Step Hyp Ref Expression
1 0elfz N 0 0 0 N
2 bcval2 0 0 N ( N 0 ) = N ! N 0 ! 0 !
3 1 2 syl N 0 ( N 0 ) = N ! N 0 ! 0 !
4 nn0cn N 0 N
5 4 subid1d N 0 N 0 = N
6 5 fveq2d N 0 N 0 ! = N !
7 fac0 0 ! = 1
8 oveq12 N 0 ! = N ! 0 ! = 1 N 0 ! 0 ! = N ! 1
9 6 7 8 sylancl N 0 N 0 ! 0 ! = N ! 1
10 faccl N 0 N !
11 10 nncnd N 0 N !
12 11 mulid1d N 0 N ! 1 = N !
13 9 12 eqtrd N 0 N 0 ! 0 ! = N !
14 13 oveq2d N 0 N ! N 0 ! 0 ! = N ! N !
15 facne0 N 0 N ! 0
16 11 15 dividd N 0 N ! N ! = 1
17 14 16 eqtrd N 0 N ! N 0 ! 0 ! = 1
18 3 17 eqtrd N 0 ( N 0 ) = 1