Metamath Proof Explorer


Theorem bcn1

Description: Binomial coefficient: N choose 1 . (Contributed by NM, 21-Jun-2005) (Revised by Mario Carneiro, 8-Nov-2013)

Ref Expression
Assertion bcn1 N 0 ( N 1 ) = N

Proof

Step Hyp Ref Expression
1 elnn0 N 0 N N = 0
2 1eluzge0 1 0
3 2 a1i N 1 0
4 elnnuz N N 1
5 4 biimpi N N 1
6 elfzuzb 1 0 N 1 0 N 1
7 3 5 6 sylanbrc N 1 0 N
8 bcval2 1 0 N ( N 1 ) = N ! N 1 ! 1 !
9 7 8 syl N ( N 1 ) = N ! N 1 ! 1 !
10 facnn2 N N ! = N 1 ! N
11 fac1 1 ! = 1
12 11 oveq2i N 1 ! 1 ! = N 1 ! 1
13 nnm1nn0 N N 1 0
14 13 faccld N N 1 !
15 14 nncnd N N 1 !
16 15 mulid1d N N 1 ! 1 = N 1 !
17 12 16 eqtrid N N 1 ! 1 ! = N 1 !
18 10 17 oveq12d N N ! N 1 ! 1 ! = N 1 ! N N 1 !
19 nncn N N
20 14 nnne0d N N 1 ! 0
21 19 15 20 divcan3d N N 1 ! N N 1 ! = N
22 9 18 21 3eqtrd N ( N 1 ) = N
23 0nn0 0 0
24 1z 1
25 0lt1 0 < 1
26 25 olci 1 < 0 0 < 1
27 bcval4 0 0 1 1 < 0 0 < 1 ( 0 1 ) = 0
28 23 24 26 27 mp3an ( 0 1 ) = 0
29 oveq1 N = 0 ( N 1 ) = ( 0 1 )
30 eqeq12 ( N 1 ) = ( 0 1 ) N = 0 ( N 1 ) = N ( 0 1 ) = 0
31 29 30 mpancom N = 0 ( N 1 ) = N ( 0 1 ) = 0
32 28 31 mpbiri N = 0 ( N 1 ) = N
33 22 32 jaoi N N = 0 ( N 1 ) = N
34 1 33 sylbi N 0 ( N 1 ) = N