Metamath Proof Explorer


Theorem bcn2m1

Description: Compute the binomial coefficient " N choose 2 " from " ( N - 1 ) choose 2 ": (N-1) + ( (N-1) 2 ) = ( N 2 ). (Contributed by Alexander van der Vekens, 7-Jan-2018)

Ref Expression
Assertion bcn2m1 N N - 1 + ( N 1 2 ) = ( N 2 )

Proof

Step Hyp Ref Expression
1 nnm1nn0 N N 1 0
2 1 nn0cnd N N 1
3 2z 2
4 bccl N 1 0 2 ( N 1 2 ) 0
5 1 3 4 sylancl N ( N 1 2 ) 0
6 5 nn0cnd N ( N 1 2 )
7 2 6 addcomd N N - 1 + ( N 1 2 ) = ( N 1 2 ) + N - 1
8 bcn1 N 1 0 ( N 1 1 ) = N 1
9 8 eqcomd N 1 0 N 1 = ( N 1 1 )
10 1 9 syl N N 1 = ( N 1 1 )
11 1e2m1 1 = 2 1
12 11 a1i N 1 = 2 1
13 12 oveq2d N ( N 1 1 ) = ( N 1 2 1 )
14 10 13 eqtrd N N 1 = ( N 1 2 1 )
15 14 oveq2d N ( N 1 2 ) + N - 1 = ( N 1 2 ) + ( N 1 2 1 )
16 bcpasc N 1 0 2 ( N 1 2 ) + ( N 1 2 1 ) = ( N - 1 + 1 2 )
17 1 3 16 sylancl N ( N 1 2 ) + ( N 1 2 1 ) = ( N - 1 + 1 2 )
18 nncn N N
19 1cnd N 1
20 18 19 npcand N N - 1 + 1 = N
21 20 oveq1d N ( N - 1 + 1 2 ) = ( N 2 )
22 17 21 eqtrd N ( N 1 2 ) + ( N 1 2 1 ) = ( N 2 )
23 7 15 22 3eqtrd N N - 1 + ( N 1 2 ) = ( N 2 )