Metamath Proof Explorer


Theorem bcnp1n

Description: Binomial coefficient: N + 1 choose N . (Contributed by NM, 20-Jun-2005) (Revised by Mario Carneiro, 8-Nov-2013)

Ref Expression
Assertion bcnp1n N 0 ( N + 1 N) = N + 1

Proof

Step Hyp Ref Expression
1 peano2nn0 N 0 N + 1 0
2 nn0z N 0 N
3 bccmpl N + 1 0 N ( N + 1 N) = ( N + 1 N + 1 - N )
4 1 2 3 syl2anc N 0 ( N + 1 N) = ( N + 1 N + 1 - N )
5 nn0cn N 0 N
6 ax-1cn 1
7 pncan2 N 1 N + 1 - N = 1
8 5 6 7 sylancl N 0 N + 1 - N = 1
9 8 oveq2d N 0 ( N + 1 N + 1 - N ) = ( N + 1 1 )
10 bcn1 N + 1 0 ( N + 1 1 ) = N + 1
11 1 10 syl N 0 ( N + 1 1 ) = N + 1
12 4 9 11 3eqtrd N 0 ( N + 1 N) = N + 1