Step |
Hyp |
Ref |
Expression |
1 |
|
2t1e2 |
|
2 |
|
df-2 |
|
3 |
1 2
|
eqtri |
|
4 |
3
|
oveq2i |
|
5 |
|
nn0cn |
|
6 |
|
2cn |
|
7 |
|
ax-1cn |
|
8 |
|
adddi |
|
9 |
6 7 8
|
mp3an13 |
|
10 |
5 9
|
syl |
|
11 |
|
2nn0 |
|
12 |
|
nn0mulcl |
|
13 |
11 12
|
mpan |
|
14 |
13
|
nn0cnd |
|
15 |
|
addass |
|
16 |
7 7 15
|
mp3an23 |
|
17 |
14 16
|
syl |
|
18 |
4 10 17
|
3eqtr4a |
|
19 |
18
|
oveq1d |
|
20 |
|
peano2nn0 |
|
21 |
13 20
|
syl |
|
22 |
|
nn0p1nn |
|
23 |
22
|
nnzd |
|
24 |
|
bcpasc |
|
25 |
21 23 24
|
syl2anc |
|
26 |
19 25
|
eqtr4d |
|
27 |
|
nn0z |
|
28 |
|
bccl |
|
29 |
13 27 28
|
syl2anc |
|
30 |
29
|
nn0cnd |
|
31 |
|
2cnd |
|
32 |
21
|
nn0red |
|
33 |
32 22
|
nndivred |
|
34 |
33
|
recnd |
|
35 |
30 31 34
|
mul12d |
|
36 |
|
1cnd |
|
37 |
14 36 5
|
addsubd |
|
38 |
5
|
2timesd |
|
39 |
5 5 38
|
mvrladdd |
|
40 |
39
|
oveq1d |
|
41 |
37 40
|
eqtr2d |
|
42 |
41
|
oveq2d |
|
43 |
42
|
oveq2d |
|
44 |
|
fzctr |
|
45 |
|
bcp1n |
|
46 |
44 45
|
syl |
|
47 |
43 46
|
eqtr4d |
|
48 |
47
|
oveq2d |
|
49 |
35 48
|
eqtrd |
|
50 |
|
bccmpl |
|
51 |
21 23 50
|
syl2anc |
|
52 |
22
|
nncnd |
|
53 |
38
|
oveq1d |
|
54 |
5 5 36
|
addassd |
|
55 |
53 54
|
eqtrd |
|
56 |
5 52 55
|
mvrraddd |
|
57 |
56
|
oveq2d |
|
58 |
51 57
|
eqtrd |
|
59 |
|
pncan |
|
60 |
5 7 59
|
sylancl |
|
61 |
60
|
oveq2d |
|
62 |
58 61
|
oveq12d |
|
63 |
|
bccl |
|
64 |
21 27 63
|
syl2anc |
|
65 |
64
|
nn0cnd |
|
66 |
65
|
2timesd |
|
67 |
62 66
|
eqtr4d |
|
68 |
49 67
|
eqtr4d |
|
69 |
26 68
|
eqtr4d |
|