Metamath Proof Explorer


Theorem bcp1ctr

Description: Ratio of two central binomial coefficients. (Contributed by Mario Carneiro, 10-Mar-2014)

Ref Expression
Assertion bcp1ctr N 0 ( 2 N + 1 N + 1 ) = ( 2 N N) 2 2 N + 1 N + 1

Proof

Step Hyp Ref Expression
1 2t1e2 2 1 = 2
2 df-2 2 = 1 + 1
3 1 2 eqtri 2 1 = 1 + 1
4 3 oveq2i 2 N + 2 1 = 2 N + 1 + 1
5 nn0cn N 0 N
6 2cn 2
7 ax-1cn 1
8 adddi 2 N 1 2 N + 1 = 2 N + 2 1
9 6 7 8 mp3an13 N 2 N + 1 = 2 N + 2 1
10 5 9 syl N 0 2 N + 1 = 2 N + 2 1
11 2nn0 2 0
12 nn0mulcl 2 0 N 0 2 N 0
13 11 12 mpan N 0 2 N 0
14 13 nn0cnd N 0 2 N
15 addass 2 N 1 1 2 N + 1 + 1 = 2 N + 1 + 1
16 7 7 15 mp3an23 2 N 2 N + 1 + 1 = 2 N + 1 + 1
17 14 16 syl N 0 2 N + 1 + 1 = 2 N + 1 + 1
18 4 10 17 3eqtr4a N 0 2 N + 1 = 2 N + 1 + 1
19 18 oveq1d N 0 ( 2 N + 1 N + 1 ) = ( 2 N + 1 + 1 N + 1 )
20 peano2nn0 2 N 0 2 N + 1 0
21 13 20 syl N 0 2 N + 1 0
22 nn0p1nn N 0 N + 1
23 22 nnzd N 0 N + 1
24 bcpasc 2 N + 1 0 N + 1 ( 2 N + 1 N + 1 ) + ( 2 N + 1 N + 1 - 1 ) = ( 2 N + 1 + 1 N + 1 )
25 21 23 24 syl2anc N 0 ( 2 N + 1 N + 1 ) + ( 2 N + 1 N + 1 - 1 ) = ( 2 N + 1 + 1 N + 1 )
26 19 25 eqtr4d N 0 ( 2 N + 1 N + 1 ) = ( 2 N + 1 N + 1 ) + ( 2 N + 1 N + 1 - 1 )
27 nn0z N 0 N
28 bccl 2 N 0 N ( 2 N N) 0
29 13 27 28 syl2anc N 0 ( 2 N N) 0
30 29 nn0cnd N 0 ( 2 N N)
31 2cnd N 0 2
32 21 nn0red N 0 2 N + 1
33 32 22 nndivred N 0 2 N + 1 N + 1
34 33 recnd N 0 2 N + 1 N + 1
35 30 31 34 mul12d N 0 ( 2 N N) 2 2 N + 1 N + 1 = 2 ( 2 N N) 2 N + 1 N + 1
36 1cnd N 0 1
37 14 36 5 addsubd N 0 2 N + 1 - N = 2 N - N + 1
38 5 2timesd N 0 2 N = N + N
39 5 5 38 mvrladdd N 0 2 N N = N
40 39 oveq1d N 0 2 N - N + 1 = N + 1
41 37 40 eqtr2d N 0 N + 1 = 2 N + 1 - N
42 41 oveq2d N 0 2 N + 1 N + 1 = 2 N + 1 2 N + 1 - N
43 42 oveq2d N 0 ( 2 N N) 2 N + 1 N + 1 = ( 2 N N) 2 N + 1 2 N + 1 - N
44 fzctr N 0 N 0 2 N
45 bcp1n N 0 2 N ( 2 N + 1 N) = ( 2 N N) 2 N + 1 2 N + 1 - N
46 44 45 syl N 0 ( 2 N + 1 N) = ( 2 N N) 2 N + 1 2 N + 1 - N
47 43 46 eqtr4d N 0 ( 2 N N) 2 N + 1 N + 1 = ( 2 N + 1 N)
48 47 oveq2d N 0 2 ( 2 N N) 2 N + 1 N + 1 = 2 ( 2 N + 1 N)
49 35 48 eqtrd N 0 ( 2 N N) 2 2 N + 1 N + 1 = 2 ( 2 N + 1 N)
50 bccmpl 2 N + 1 0 N + 1 ( 2 N + 1 N + 1 ) = ( 2 N + 1 2 N + 1 - N + 1 )
51 21 23 50 syl2anc N 0 ( 2 N + 1 N + 1 ) = ( 2 N + 1 2 N + 1 - N + 1 )
52 22 nncnd N 0 N + 1
53 38 oveq1d N 0 2 N + 1 = N + N + 1
54 5 5 36 addassd N 0 N + N + 1 = N + N + 1
55 53 54 eqtrd N 0 2 N + 1 = N + N + 1
56 5 52 55 mvrraddd N 0 2 N + 1 - N + 1 = N
57 56 oveq2d N 0 ( 2 N + 1 2 N + 1 - N + 1 ) = ( 2 N + 1 N)
58 51 57 eqtrd N 0 ( 2 N + 1 N + 1 ) = ( 2 N + 1 N)
59 pncan N 1 N + 1 - 1 = N
60 5 7 59 sylancl N 0 N + 1 - 1 = N
61 60 oveq2d N 0 ( 2 N + 1 N + 1 - 1 ) = ( 2 N + 1 N)
62 58 61 oveq12d N 0 ( 2 N + 1 N + 1 ) + ( 2 N + 1 N + 1 - 1 ) = ( 2 N + 1 N) + ( 2 N + 1 N)
63 bccl 2 N + 1 0 N ( 2 N + 1 N) 0
64 21 27 63 syl2anc N 0 ( 2 N + 1 N) 0
65 64 nn0cnd N 0 ( 2 N + 1 N)
66 65 2timesd N 0 2 ( 2 N + 1 N) = ( 2 N + 1 N) + ( 2 N + 1 N)
67 62 66 eqtr4d N 0 ( 2 N + 1 N + 1 ) + ( 2 N + 1 N + 1 - 1 ) = 2 ( 2 N + 1 N)
68 49 67 eqtr4d N 0 ( 2 N N) 2 2 N + 1 N + 1 = ( 2 N + 1 N + 1 ) + ( 2 N + 1 N + 1 - 1 )
69 26 68 eqtr4d N 0 ( 2 N + 1 N + 1 ) = ( 2 N N) 2 2 N + 1 N + 1