Step |
Hyp |
Ref |
Expression |
1 |
|
elfz3nn0 |
|
2 |
|
facp1 |
|
3 |
1 2
|
syl |
|
4 |
|
fznn0sub |
|
5 |
|
facp1 |
|
6 |
4 5
|
syl |
|
7 |
1
|
nn0cnd |
|
8 |
|
1cnd |
|
9 |
|
elfznn0 |
|
10 |
9
|
nn0cnd |
|
11 |
7 8 10
|
addsubd |
|
12 |
11
|
fveq2d |
|
13 |
11
|
oveq2d |
|
14 |
6 12 13
|
3eqtr4d |
|
15 |
14
|
oveq1d |
|
16 |
4
|
faccld |
|
17 |
16
|
nncnd |
|
18 |
|
nn0p1nn |
|
19 |
4 18
|
syl |
|
20 |
11 19
|
eqeltrd |
|
21 |
20
|
nncnd |
|
22 |
9
|
faccld |
|
23 |
22
|
nncnd |
|
24 |
17 21 23
|
mul32d |
|
25 |
15 24
|
eqtrd |
|
26 |
3 25
|
oveq12d |
|
27 |
1
|
faccld |
|
28 |
27
|
nncnd |
|
29 |
|
nn0p1nn |
|
30 |
1 29
|
syl |
|
31 |
30
|
nncnd |
|
32 |
16 22
|
nnmulcld |
|
33 |
|
nncn |
|
34 |
|
nnne0 |
|
35 |
33 34
|
jca |
|
36 |
32 35
|
syl |
|
37 |
20
|
nnne0d |
|
38 |
21 37
|
jca |
|
39 |
|
divmuldiv |
|
40 |
28 31 36 38 39
|
syl22anc |
|
41 |
26 40
|
eqtr4d |
|
42 |
|
fzelp1 |
|
43 |
|
bcval2 |
|
44 |
42 43
|
syl |
|
45 |
|
bcval2 |
|
46 |
45
|
oveq1d |
|
47 |
41 44 46
|
3eqtr4d |
|