Metamath Proof Explorer


Theorem bcp1n

Description: The proportion of one binomial coefficient to another with N increased by 1. (Contributed by Mario Carneiro, 10-Mar-2014)

Ref Expression
Assertion bcp1n K 0 N ( N + 1 K) = ( N K) N + 1 N + 1 - K

Proof

Step Hyp Ref Expression
1 elfz3nn0 K 0 N N 0
2 facp1 N 0 N + 1 ! = N ! N + 1
3 1 2 syl K 0 N N + 1 ! = N ! N + 1
4 fznn0sub K 0 N N K 0
5 facp1 N K 0 N - K + 1 ! = N K ! N - K + 1
6 4 5 syl K 0 N N - K + 1 ! = N K ! N - K + 1
7 1 nn0cnd K 0 N N
8 1cnd K 0 N 1
9 elfznn0 K 0 N K 0
10 9 nn0cnd K 0 N K
11 7 8 10 addsubd K 0 N N + 1 - K = N - K + 1
12 11 fveq2d K 0 N N + 1 - K ! = N - K + 1 !
13 11 oveq2d K 0 N N K ! N + 1 - K = N K ! N - K + 1
14 6 12 13 3eqtr4d K 0 N N + 1 - K ! = N K ! N + 1 - K
15 14 oveq1d K 0 N N + 1 - K ! K ! = N K ! N + 1 - K K !
16 4 faccld K 0 N N K !
17 16 nncnd K 0 N N K !
18 nn0p1nn N K 0 N - K + 1
19 4 18 syl K 0 N N - K + 1
20 11 19 eqeltrd K 0 N N + 1 - K
21 20 nncnd K 0 N N + 1 - K
22 9 faccld K 0 N K !
23 22 nncnd K 0 N K !
24 17 21 23 mul32d K 0 N N K ! N + 1 - K K ! = N K ! K ! N + 1 - K
25 15 24 eqtrd K 0 N N + 1 - K ! K ! = N K ! K ! N + 1 - K
26 3 25 oveq12d K 0 N N + 1 ! N + 1 - K ! K ! = N ! N + 1 N K ! K ! N + 1 - K
27 1 faccld K 0 N N !
28 27 nncnd K 0 N N !
29 nn0p1nn N 0 N + 1
30 1 29 syl K 0 N N + 1
31 30 nncnd K 0 N N + 1
32 16 22 nnmulcld K 0 N N K ! K !
33 nncn N K ! K ! N K ! K !
34 nnne0 N K ! K ! N K ! K ! 0
35 33 34 jca N K ! K ! N K ! K ! N K ! K ! 0
36 32 35 syl K 0 N N K ! K ! N K ! K ! 0
37 20 nnne0d K 0 N N + 1 - K 0
38 21 37 jca K 0 N N + 1 - K N + 1 - K 0
39 divmuldiv N ! N + 1 N K ! K ! N K ! K ! 0 N + 1 - K N + 1 - K 0 N ! N K ! K ! N + 1 N + 1 - K = N ! N + 1 N K ! K ! N + 1 - K
40 28 31 36 38 39 syl22anc K 0 N N ! N K ! K ! N + 1 N + 1 - K = N ! N + 1 N K ! K ! N + 1 - K
41 26 40 eqtr4d K 0 N N + 1 ! N + 1 - K ! K ! = N ! N K ! K ! N + 1 N + 1 - K
42 fzelp1 K 0 N K 0 N + 1
43 bcval2 K 0 N + 1 ( N + 1 K) = N + 1 ! N + 1 - K ! K !
44 42 43 syl K 0 N ( N + 1 K) = N + 1 ! N + 1 - K ! K !
45 bcval2 K 0 N ( N K) = N ! N K ! K !
46 45 oveq1d K 0 N ( N K) N + 1 N + 1 - K = N ! N K ! K ! N + 1 N + 1 - K
47 41 44 46 3eqtr4d K 0 N ( N + 1 K) = ( N K) N + 1 N + 1 - K