| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfz3nn0 |
|
| 2 |
|
facp1 |
|
| 3 |
1 2
|
syl |
|
| 4 |
|
fznn0sub |
|
| 5 |
|
facp1 |
|
| 6 |
4 5
|
syl |
|
| 7 |
1
|
nn0cnd |
|
| 8 |
|
1cnd |
|
| 9 |
|
elfznn0 |
|
| 10 |
9
|
nn0cnd |
|
| 11 |
7 8 10
|
addsubd |
|
| 12 |
11
|
fveq2d |
|
| 13 |
11
|
oveq2d |
|
| 14 |
6 12 13
|
3eqtr4d |
|
| 15 |
14
|
oveq1d |
|
| 16 |
4
|
faccld |
|
| 17 |
16
|
nncnd |
|
| 18 |
|
nn0p1nn |
|
| 19 |
4 18
|
syl |
|
| 20 |
11 19
|
eqeltrd |
|
| 21 |
20
|
nncnd |
|
| 22 |
9
|
faccld |
|
| 23 |
22
|
nncnd |
|
| 24 |
17 21 23
|
mul32d |
|
| 25 |
15 24
|
eqtrd |
|
| 26 |
3 25
|
oveq12d |
|
| 27 |
1
|
faccld |
|
| 28 |
27
|
nncnd |
|
| 29 |
|
nn0p1nn |
|
| 30 |
1 29
|
syl |
|
| 31 |
30
|
nncnd |
|
| 32 |
16 22
|
nnmulcld |
|
| 33 |
|
nncn |
|
| 34 |
|
nnne0 |
|
| 35 |
33 34
|
jca |
|
| 36 |
32 35
|
syl |
|
| 37 |
20
|
nnne0d |
|
| 38 |
21 37
|
jca |
|
| 39 |
|
divmuldiv |
|
| 40 |
28 31 36 38 39
|
syl22anc |
|
| 41 |
26 40
|
eqtr4d |
|
| 42 |
|
fzelp1 |
|
| 43 |
|
bcval2 |
|
| 44 |
42 43
|
syl |
|
| 45 |
|
bcval2 |
|
| 46 |
45
|
oveq1d |
|
| 47 |
41 44 46
|
3eqtr4d |
|