Step |
Hyp |
Ref |
Expression |
1 |
|
elfzel1 |
|
2 |
|
elfzel2 |
|
3 |
|
elfzelz |
|
4 |
|
1zzd |
|
5 |
|
fzaddel |
|
6 |
1 2 3 4 5
|
syl22anc |
|
7 |
6
|
ibi |
|
8 |
|
1e0p1 |
|
9 |
8
|
oveq1i |
|
10 |
7 9
|
eleqtrrdi |
|
11 |
|
bcm1k |
|
12 |
10 11
|
syl |
|
13 |
3
|
zcnd |
|
14 |
|
ax-1cn |
|
15 |
|
pncan |
|
16 |
13 14 15
|
sylancl |
|
17 |
16
|
oveq2d |
|
18 |
|
bcp1n |
|
19 |
17 18
|
eqtrd |
|
20 |
16
|
oveq2d |
|
21 |
20
|
oveq1d |
|
22 |
19 21
|
oveq12d |
|
23 |
|
bcrpcl |
|
24 |
23
|
rpcnd |
|
25 |
2
|
peano2zd |
|
26 |
25
|
zred |
|
27 |
3
|
zred |
|
28 |
2
|
zred |
|
29 |
|
elfzle2 |
|
30 |
28
|
ltp1d |
|
31 |
27 28 26 29 30
|
lelttrd |
|
32 |
|
znnsub |
|
33 |
3 25 32
|
syl2anc |
|
34 |
31 33
|
mpbid |
|
35 |
26 34
|
nndivred |
|
36 |
35
|
recnd |
|
37 |
34
|
nnred |
|
38 |
|
elfznn0 |
|
39 |
|
nn0p1nn |
|
40 |
38 39
|
syl |
|
41 |
37 40
|
nndivred |
|
42 |
41
|
recnd |
|
43 |
24 36 42
|
mulassd |
|
44 |
25
|
zcnd |
|
45 |
34
|
nncnd |
|
46 |
40
|
nncnd |
|
47 |
34
|
nnne0d |
|
48 |
40
|
nnne0d |
|
49 |
44 45 46 47 48
|
dmdcan2d |
|
50 |
49
|
oveq2d |
|
51 |
43 50
|
eqtrd |
|
52 |
22 51
|
eqtrd |
|
53 |
12 52
|
eqtrd |
|