Metamath Proof Explorer


Theorem bcrpcl

Description: Closure of the binomial coefficient in the positive reals. (This is mostly a lemma before we have bccl2 .) (Contributed by Mario Carneiro, 10-Mar-2014)

Ref Expression
Assertion bcrpcl K 0 N ( N K) +

Proof

Step Hyp Ref Expression
1 bcval2 K 0 N ( N K) = N ! N K ! K !
2 elfz3nn0 K 0 N N 0
3 2 faccld K 0 N N !
4 fznn0sub K 0 N N K 0
5 elfznn0 K 0 N K 0
6 faccl N K 0 N K !
7 faccl K 0 K !
8 nnmulcl N K ! K ! N K ! K !
9 6 7 8 syl2an N K 0 K 0 N K ! K !
10 4 5 9 syl2anc K 0 N N K ! K !
11 nnrp N ! N ! +
12 nnrp N K ! K ! N K ! K ! +
13 rpdivcl N ! + N K ! K ! + N ! N K ! K ! +
14 11 12 13 syl2an N ! N K ! K ! N ! N K ! K ! +
15 3 10 14 syl2anc K 0 N N ! N K ! K ! +
16 1 15 eqeltrd K 0 N ( N K) +