Metamath Proof Explorer


Theorem bcs

Description: Bunjakovaskij-Cauchy-Schwarz inequality. Remark 3.4 of Beran p. 98. (Contributed by NM, 16-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion bcs A B A ih B norm A norm B

Proof

Step Hyp Ref Expression
1 fvoveq1 A = if A A 0 A ih B = if A A 0 ih B
2 fveq2 A = if A A 0 norm A = norm if A A 0
3 2 oveq1d A = if A A 0 norm A norm B = norm if A A 0 norm B
4 1 3 breq12d A = if A A 0 A ih B norm A norm B if A A 0 ih B norm if A A 0 norm B
5 oveq2 B = if B B 0 if A A 0 ih B = if A A 0 ih if B B 0
6 5 fveq2d B = if B B 0 if A A 0 ih B = if A A 0 ih if B B 0
7 fveq2 B = if B B 0 norm B = norm if B B 0
8 7 oveq2d B = if B B 0 norm if A A 0 norm B = norm if A A 0 norm if B B 0
9 6 8 breq12d B = if B B 0 if A A 0 ih B norm if A A 0 norm B if A A 0 ih if B B 0 norm if A A 0 norm if B B 0
10 ifhvhv0 if A A 0
11 ifhvhv0 if B B 0
12 10 11 bcsiHIL if A A 0 ih if B B 0 norm if A A 0 norm if B B 0
13 4 9 12 dedth2h A B A ih B norm A norm B