Metamath Proof Explorer


Theorem bcs2

Description: Corollary of the Bunjakovaskij-Cauchy-Schwarz inequality bcsiHIL . (Contributed by NM, 24-May-2006) (New usage is discouraged.)

Ref Expression
Assertion bcs2 A B norm A 1 A ih B norm B

Proof

Step Hyp Ref Expression
1 hicl A B A ih B
2 1 abscld A B A ih B
3 2 3adant3 A B norm A 1 A ih B
4 normcl A norm A
5 normcl B norm B
6 remulcl norm A norm B norm A norm B
7 4 5 6 syl2an A B norm A norm B
8 7 3adant3 A B norm A 1 norm A norm B
9 5 3ad2ant2 A B norm A 1 norm B
10 bcs A B A ih B norm A norm B
11 10 3adant3 A B norm A 1 A ih B norm A norm B
12 4 3ad2ant1 A B norm A 1 norm A
13 normge0 B 0 norm B
14 13 3ad2ant2 A B norm A 1 0 norm B
15 9 14 jca A B norm A 1 norm B 0 norm B
16 simp3 A B norm A 1 norm A 1
17 1re 1
18 lemul1a norm A 1 norm B 0 norm B norm A 1 norm A norm B 1 norm B
19 17 18 mp3anl2 norm A norm B 0 norm B norm A 1 norm A norm B 1 norm B
20 12 15 16 19 syl21anc A B norm A 1 norm A norm B 1 norm B
21 5 recnd B norm B
22 21 mulid2d B 1 norm B = norm B
23 22 3ad2ant2 A B norm A 1 1 norm B = norm B
24 20 23 breqtrd A B norm A 1 norm A norm B norm B
25 3 8 9 11 24 letrd A B norm A 1 A ih B norm B