Metamath Proof Explorer


Theorem bcsiHIL

Description: Bunjakovaskij-Cauchy-Schwarz inequality. Remark 3.4 of Beran p. 98. (Proved from ZFC version.) (Contributed by NM, 24-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypotheses bcs.1 A
bcs.2 B
Assertion bcsiHIL A ih B norm A norm B

Proof

Step Hyp Ref Expression
1 bcs.1 A
2 bcs.2 B
3 df-hba = BaseSet + norm
4 eqid + norm = + norm
5 4 hhnm norm = norm CV + norm
6 4 hhip ih = 𝑖OLD + norm
7 4 hhph + norm CPreHil OLD
8 3 5 6 7 1 2 siii A ih B norm A norm B