Metamath Proof Explorer


Theorem bcth2

Description: Baire's Category Theorem, version 2: If countably many closed sets cover X , then one of them has an interior. (Contributed by Mario Carneiro, 10-Jan-2014)

Ref Expression
Hypothesis bcth.2 J = MetOpen D
Assertion bcth2 D CMet X X M : Clsd J ran M = X k int J M k

Proof

Step Hyp Ref Expression
1 bcth.2 J = MetOpen D
2 simpll D CMet X X M : Clsd J ran M = X D CMet X
3 simprl D CMet X X M : Clsd J ran M = X M : Clsd J
4 cmetmet D CMet X D Met X
5 4 ad2antrr D CMet X X M : Clsd J ran M = X D Met X
6 metxmet D Met X D ∞Met X
7 1 mopntopon D ∞Met X J TopOn X
8 5 6 7 3syl D CMet X X M : Clsd J ran M = X J TopOn X
9 topontop J TopOn X J Top
10 8 9 syl D CMet X X M : Clsd J ran M = X J Top
11 simprr D CMet X X M : Clsd J ran M = X ran M = X
12 toponmax J TopOn X X J
13 8 12 syl D CMet X X M : Clsd J ran M = X X J
14 11 13 eqeltrd D CMet X X M : Clsd J ran M = X ran M J
15 isopn3i J Top ran M J int J ran M = ran M
16 10 14 15 syl2anc D CMet X X M : Clsd J ran M = X int J ran M = ran M
17 16 11 eqtrd D CMet X X M : Clsd J ran M = X int J ran M = X
18 simplr D CMet X X M : Clsd J ran M = X X
19 17 18 eqnetrd D CMet X X M : Clsd J ran M = X int J ran M
20 1 bcth D CMet X M : Clsd J int J ran M k int J M k
21 2 3 19 20 syl3anc D CMet X X M : Clsd J ran M = X k int J M k