Metamath Proof Explorer


Theorem bcth3

Description: Baire's Category Theorem, version 3: The intersection of countably many dense open sets is dense. (Contributed by Mario Carneiro, 10-Jan-2014)

Ref Expression
Hypothesis bcth.2 J = MetOpen D
Assertion bcth3 D CMet X M : J k cls J M k = X cls J ran M = X

Proof

Step Hyp Ref Expression
1 bcth.2 J = MetOpen D
2 cmetmet D CMet X D Met X
3 metxmet D Met X D ∞Met X
4 2 3 syl D CMet X D ∞Met X
5 1 mopntop D ∞Met X J Top
6 5 ad2antrr D ∞Met X M : J k J Top
7 ffvelrn M : J k M k J
8 elssuni M k J M k J
9 7 8 syl M : J k M k J
10 9 adantll D ∞Met X M : J k M k J
11 eqid J = J
12 11 clsval2 J Top M k J cls J M k = J int J J M k
13 6 10 12 syl2anc D ∞Met X M : J k cls J M k = J int J J M k
14 1 mopnuni D ∞Met X X = J
15 14 ad2antrr D ∞Met X M : J k X = J
16 13 15 eqeq12d D ∞Met X M : J k cls J M k = X J int J J M k = J
17 difeq2 J int J J M k = J J J int J J M k = J J
18 difid J J =
19 17 18 eqtrdi J int J J M k = J J J int J J M k =
20 difss J M k J
21 11 ntropn J Top J M k J int J J M k J
22 6 20 21 sylancl D ∞Met X M : J k int J J M k J
23 elssuni int J J M k J int J J M k J
24 22 23 syl D ∞Met X M : J k int J J M k J
25 dfss4 int J J M k J J J int J J M k = int J J M k
26 24 25 sylib D ∞Met X M : J k J J int J J M k = int J J M k
27 id k k
28 elfvdm D ∞Met X X dom ∞Met
29 28 difexd D ∞Met X X M k V
30 29 adantr D ∞Met X M : J X M k V
31 fveq2 x = k M x = M k
32 31 difeq2d x = k X M x = X M k
33 eqid x X M x = x X M x
34 32 33 fvmptg k X M k V x X M x k = X M k
35 27 30 34 syl2anr D ∞Met X M : J k x X M x k = X M k
36 15 difeq1d D ∞Met X M : J k X M k = J M k
37 35 36 eqtrd D ∞Met X M : J k x X M x k = J M k
38 37 fveq2d D ∞Met X M : J k int J x X M x k = int J J M k
39 26 38 eqtr4d D ∞Met X M : J k J J int J J M k = int J x X M x k
40 39 eqeq1d D ∞Met X M : J k J J int J J M k = int J x X M x k =
41 19 40 syl5ib D ∞Met X M : J k J int J J M k = J int J x X M x k =
42 16 41 sylbid D ∞Met X M : J k cls J M k = X int J x X M x k =
43 42 ralimdva D ∞Met X M : J k cls J M k = X k int J x X M x k =
44 4 43 sylan D CMet X M : J k cls J M k = X k int J x X M x k =
45 ffvelrn M : J x M x J
46 14 difeq1d D ∞Met X X M x = J M x
47 46 adantr D ∞Met X M x J X M x = J M x
48 11 opncld J Top M x J J M x Clsd J
49 5 48 sylan D ∞Met X M x J J M x Clsd J
50 47 49 eqeltrd D ∞Met X M x J X M x Clsd J
51 45 50 sylan2 D ∞Met X M : J x X M x Clsd J
52 51 anassrs D ∞Met X M : J x X M x Clsd J
53 52 ralrimiva D ∞Met X M : J x X M x Clsd J
54 4 53 sylan D CMet X M : J x X M x Clsd J
55 33 fmpt x X M x Clsd J x X M x : Clsd J
56 54 55 sylib D CMet X M : J x X M x : Clsd J
57 nne ¬ int J x X M x k int J x X M x k =
58 57 ralbii k ¬ int J x X M x k k int J x X M x k =
59 ralnex k ¬ int J x X M x k ¬ k int J x X M x k
60 58 59 bitr3i k int J x X M x k = ¬ k int J x X M x k
61 1 bcth D CMet X x X M x : Clsd J int J ran x X M x k int J x X M x k
62 61 3expia D CMet X x X M x : Clsd J int J ran x X M x k int J x X M x k
63 62 necon1bd D CMet X x X M x : Clsd J ¬ k int J x X M x k int J ran x X M x =
64 60 63 syl5bi D CMet X x X M x : Clsd J k int J x X M x k = int J ran x X M x =
65 56 64 syldan D CMet X M : J k int J x X M x k = int J ran x X M x =
66 difeq2 int J ran x X M x = J int J ran x X M x = J
67 28 difexd D ∞Met X X M x V
68 67 ad2antrr D ∞Met X M : J x X M x V
69 68 ralrimiva D ∞Met X M : J x X M x V
70 33 fnmpt x X M x V x X M x Fn
71 fniunfv x X M x Fn k x X M x k = ran x X M x
72 69 70 71 3syl D ∞Met X M : J k x X M x k = ran x X M x
73 35 iuneq2dv D ∞Met X M : J k x X M x k = k X M k
74 32 cbviunv x X M x = k X M k
75 73 74 eqtr4di D ∞Met X M : J k x X M x k = x X M x
76 72 75 eqtr3d D ∞Met X M : J ran x X M x = x X M x
77 iundif2 x X M x = X x M x
78 76 77 eqtrdi D ∞Met X M : J ran x X M x = X x M x
79 ffn M : J M Fn
80 79 adantl D ∞Met X M : J M Fn
81 fniinfv M Fn x M x = ran M
82 80 81 syl D ∞Met X M : J x M x = ran M
83 82 difeq2d D ∞Met X M : J X x M x = X ran M
84 14 adantr D ∞Met X M : J X = J
85 84 difeq1d D ∞Met X M : J X ran M = J ran M
86 78 83 85 3eqtrd D ∞Met X M : J ran x X M x = J ran M
87 86 fveq2d D ∞Met X M : J int J ran x X M x = int J J ran M
88 87 difeq2d D ∞Met X M : J J int J ran x X M x = J int J J ran M
89 5 adantr D ∞Met X M : J J Top
90 1nn 1
91 biidd k = 1 D ∞Met X M : J ran M J D ∞Met X M : J ran M J
92 fnfvelrn M Fn k M k ran M
93 80 92 sylan D ∞Met X M : J k M k ran M
94 intss1 M k ran M ran M M k
95 93 94 syl D ∞Met X M : J k ran M M k
96 95 10 sstrd D ∞Met X M : J k ran M J
97 96 expcom k D ∞Met X M : J ran M J
98 91 97 vtoclga 1 D ∞Met X M : J ran M J
99 90 98 ax-mp D ∞Met X M : J ran M J
100 11 clsval2 J Top ran M J cls J ran M = J int J J ran M
101 89 99 100 syl2anc D ∞Met X M : J cls J ran M = J int J J ran M
102 88 101 eqtr4d D ∞Met X M : J J int J ran x X M x = cls J ran M
103 dif0 J = J
104 103 84 eqtr4id D ∞Met X M : J J = X
105 102 104 eqeq12d D ∞Met X M : J J int J ran x X M x = J cls J ran M = X
106 66 105 syl5ib D ∞Met X M : J int J ran x X M x = cls J ran M = X
107 4 106 sylan D CMet X M : J int J ran x X M x = cls J ran M = X
108 44 65 107 3syld D CMet X M : J k cls J M k = X cls J ran M = X
109 108 3impia D CMet X M : J k cls J M k = X cls J ran M = X