| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bcth.2 |
|
| 2 |
|
bcthlem.4 |
|
| 3 |
|
bcthlem.5 |
|
| 4 |
|
bcthlem.6 |
|
| 5 |
|
bcthlem.7 |
|
| 6 |
|
bcthlem.8 |
|
| 7 |
|
bcthlem.9 |
|
| 8 |
|
bcthlem.10 |
|
| 9 |
|
bcthlem.11 |
|
| 10 |
|
cmetmet |
|
| 11 |
2 10
|
syl |
|
| 12 |
|
metxmet |
|
| 13 |
11 12
|
syl |
|
| 14 |
1 2 3 4 5 6 7 8 9
|
bcthlem2 |
|
| 15 |
|
elrp |
|
| 16 |
|
nnrecl |
|
| 17 |
15 16
|
sylbi |
|
| 18 |
17
|
adantl |
|
| 19 |
|
peano2nn |
|
| 20 |
19
|
adantl |
|
| 21 |
|
fvoveq1 |
|
| 22 |
|
id |
|
| 23 |
|
fveq2 |
|
| 24 |
22 23
|
oveq12d |
|
| 25 |
21 24
|
eleq12d |
|
| 26 |
25
|
rspccva |
|
| 27 |
9 26
|
sylan |
|
| 28 |
7
|
ffvelcdmda |
|
| 29 |
1 2 3
|
bcthlem1 |
|
| 30 |
29
|
expr |
|
| 31 |
28 30
|
mpd |
|
| 32 |
27 31
|
mpbid |
|
| 33 |
32
|
simp2d |
|
| 34 |
33
|
adantlr |
|
| 35 |
32
|
simp1d |
|
| 36 |
|
xp2nd |
|
| 37 |
35 36
|
syl |
|
| 38 |
37
|
rpred |
|
| 39 |
38
|
adantlr |
|
| 40 |
|
nnrecre |
|
| 41 |
40
|
adantl |
|
| 42 |
|
rpre |
|
| 43 |
42
|
ad2antlr |
|
| 44 |
|
lttr |
|
| 45 |
39 41 43 44
|
syl3anc |
|
| 46 |
34 45
|
mpand |
|
| 47 |
|
2fveq3 |
|
| 48 |
47
|
breq1d |
|
| 49 |
48
|
rspcev |
|
| 50 |
20 46 49
|
syl6an |
|
| 51 |
50
|
rexlimdva |
|
| 52 |
18 51
|
mpd |
|
| 53 |
52
|
ralrimiva |
|
| 54 |
13 7 14 53
|
caubl |
|
| 55 |
1
|
cmetcau |
|
| 56 |
2 54 55
|
syl2anc |
|
| 57 |
|
fo1st |
|
| 58 |
|
fofun |
|
| 59 |
57 58
|
ax-mp |
|
| 60 |
|
vex |
|
| 61 |
|
cofunexg |
|
| 62 |
59 60 61
|
mp2an |
|
| 63 |
62
|
eldm |
|
| 64 |
56 63
|
sylib |
|
| 65 |
|
1nn |
|
| 66 |
1 2 3 4 5 6 7 8 9
|
bcthlem3 |
|
| 67 |
65 66
|
mp3an3 |
|
| 68 |
8
|
fveq2d |
|
| 69 |
|
df-ov |
|
| 70 |
68 69
|
eqtr4di |
|
| 71 |
70
|
adantr |
|
| 72 |
67 71
|
eleqtrd |
|
| 73 |
1
|
mopntop |
|
| 74 |
13 73
|
syl |
|
| 75 |
74
|
adantr |
|
| 76 |
13
|
adantr |
|
| 77 |
|
xp1st |
|
| 78 |
35 77
|
syl |
|
| 79 |
37
|
rpxrd |
|
| 80 |
|
blssm |
|
| 81 |
76 78 79 80
|
syl3anc |
|
| 82 |
|
df-ov |
|
| 83 |
|
1st2nd2 |
|
| 84 |
35 83
|
syl |
|
| 85 |
84
|
fveq2d |
|
| 86 |
82 85
|
eqtr4id |
|
| 87 |
1
|
mopnuni |
|
| 88 |
13 87
|
syl |
|
| 89 |
88
|
adantr |
|
| 90 |
81 86 89
|
3sstr3d |
|
| 91 |
|
eqid |
|
| 92 |
91
|
sscls |
|
| 93 |
75 90 92
|
syl2anc |
|
| 94 |
32
|
simp3d |
|
| 95 |
93 94
|
sstrd |
|
| 96 |
95
|
3adant2 |
|
| 97 |
1 2 3 4 5 6 7 8 9
|
bcthlem3 |
|
| 98 |
19 97
|
syl3an3 |
|
| 99 |
96 98
|
sseldd |
|
| 100 |
99
|
eldifbd |
|
| 101 |
100
|
3expa |
|
| 102 |
101
|
ralrimiva |
|
| 103 |
|
eluni2 |
|
| 104 |
4
|
ffnd |
|
| 105 |
|
eleq2 |
|
| 106 |
105
|
rexrn |
|
| 107 |
104 106
|
syl |
|
| 108 |
103 107
|
bitrid |
|
| 109 |
108
|
notbid |
|
| 110 |
|
ralnex |
|
| 111 |
109 110
|
bitr4di |
|
| 112 |
111
|
biimpar |
|
| 113 |
102 112
|
syldan |
|
| 114 |
72 113
|
eldifd |
|
| 115 |
114
|
ne0d |
|
| 116 |
64 115
|
exlimddv |
|