Metamath Proof Explorer


Theorem bcval2

Description: Value of the binomial coefficient, N choose K , in its standard domain. (Contributed by NM, 9-Jun-2005) (Revised by Mario Carneiro, 7-Nov-2013)

Ref Expression
Assertion bcval2 K 0 N ( N K) = N ! N K ! K !

Proof

Step Hyp Ref Expression
1 elfz3nn0 K 0 N N 0
2 elfzelz K 0 N K
3 bcval N 0 K ( N K) = if K 0 N N ! N K ! K ! 0
4 1 2 3 syl2anc K 0 N ( N K) = if K 0 N N ! N K ! K ! 0
5 iftrue K 0 N if K 0 N N ! N K ! K ! 0 = N ! N K ! K !
6 4 5 eqtrd K 0 N ( N K) = N ! N K ! K !