Metamath Proof Explorer


Theorem bcval3

Description: Value of the binomial coefficient, N choose K , outside of its standard domain. Remark in Gleason p. 295. (Contributed by NM, 14-Jul-2005) (Revised by Mario Carneiro, 8-Nov-2013)

Ref Expression
Assertion bcval3 N 0 K ¬ K 0 N ( N K) = 0

Proof

Step Hyp Ref Expression
1 bcval N 0 K ( N K) = if K 0 N N ! N K ! K ! 0
2 1 3adant3 N 0 K ¬ K 0 N ( N K) = if K 0 N N ! N K ! K ! 0
3 iffalse ¬ K 0 N if K 0 N N ! N K ! K ! 0 = 0
4 3 3ad2ant3 N 0 K ¬ K 0 N if K 0 N N ! N K ! K ! 0 = 0
5 2 4 eqtrd N 0 K ¬ K 0 N ( N K) = 0