Database
REAL AND COMPLEX NUMBERS
Elementary limits and convergence
The binomial theorem
bcxmaslem1
Next ⟩
bcxmas
Metamath Proof Explorer
Ascii
Unicode
Theorem
bcxmaslem1
Description:
Lemma for
bcxmas
.
(Contributed by
Paul Chapman
, 18-May-2007)
Ref
Expression
Assertion
bcxmaslem1
⊢
A
=
B
→
(
N
+
A
A
)
=
(
N
+
B
B
)
Proof
Step
Hyp
Ref
Expression
1
oveq2
⊢
A
=
B
→
N
+
A
=
N
+
B
2
id
⊢
A
=
B
→
A
=
B
3
1
2
oveq12d
⊢
A
=
B
→
(
N
+
A
A
)
=
(
N
+
B
B
)