Metamath Proof Explorer


Theorem bday1s

Description: The birthday of surreal one is ordinal one. (Contributed by Scott Fenton, 8-Aug-2024)

Ref Expression
Assertion bday1s bday 1 s = 1 𝑜

Proof

Step Hyp Ref Expression
1 df-1s 1 s = 0 s | s
2 1 fveq2i bday 1 s = bday 0 s | s
3 0sno 0 s No
4 snelpwi 0 s No 0 s 𝒫 No
5 3 4 ax-mp 0 s 𝒫 No
6 nulssgt 0 s 𝒫 No 0 s s
7 5 6 ax-mp 0 s s
8 scutbdaybnd2 0 s s bday 0 s | s suc bday 0 s
9 7 8 ax-mp bday 0 s | s suc bday 0 s
10 un0 0 s = 0 s
11 10 imaeq2i bday 0 s = bday 0 s
12 bdayfn bday Fn No
13 fnsnfv bday Fn No 0 s No bday 0 s = bday 0 s
14 12 3 13 mp2an bday 0 s = bday 0 s
15 bday0s bday 0 s =
16 15 sneqi bday 0 s =
17 11 14 16 3eqtr2i bday 0 s =
18 17 unieqi bday 0 s =
19 0ex V
20 19 unisn =
21 18 20 eqtri bday 0 s =
22 suceq bday 0 s = suc bday 0 s = suc
23 21 22 ax-mp suc bday 0 s = suc
24 df-1o 1 𝑜 = suc
25 23 24 eqtr4i suc bday 0 s = 1 𝑜
26 9 25 sseqtri bday 0 s | s 1 𝑜
27 ssrab2 x No | 0 s s x x s No
28 fnssintima bday Fn No x No | 0 s s x x s No 1 𝑜 bday x No | 0 s s x x s y x No | 0 s s x x s 1 𝑜 bday y
29 12 27 28 mp2an 1 𝑜 bday x No | 0 s s x x s y x No | 0 s s x x s 1 𝑜 bday y
30 sneq x = y x = y
31 30 breq2d x = y 0 s s x 0 s s y
32 30 breq1d x = y x s y s
33 31 32 anbi12d x = y 0 s s x x s 0 s s y y s
34 33 elrab y x No | 0 s s x x s y No 0 s s y y s
35 sltirr 0 s No ¬ 0 s < s 0 s
36 3 35 ax-mp ¬ 0 s < s 0 s
37 breq2 y = 0 s 0 s < s y 0 s < s 0 s
38 36 37 mtbiri y = 0 s ¬ 0 s < s y
39 38 necon2ai 0 s < s y y 0 s
40 bday0b y No bday y = y = 0 s
41 40 necon3bid y No bday y y 0 s
42 39 41 imbitrrid y No 0 s < s y bday y
43 bdayelon bday y On
44 43 onordi Ord bday y
45 ordge1n0 Ord bday y 1 𝑜 bday y bday y
46 44 45 ax-mp 1 𝑜 bday y bday y
47 42 46 imbitrrdi y No 0 s < s y 1 𝑜 bday y
48 ssltsep 0 s s y x 0 s z y x < s z
49 vex y V
50 breq2 z = y x < s z x < s y
51 49 50 ralsn z y x < s z x < s y
52 51 ralbii x 0 s z y x < s z x 0 s x < s y
53 3 elexi 0 s V
54 breq1 x = 0 s x < s y 0 s < s y
55 53 54 ralsn x 0 s x < s y 0 s < s y
56 52 55 bitri x 0 s z y x < s z 0 s < s y
57 48 56 sylib 0 s s y 0 s < s y
58 47 57 impel y No 0 s s y 1 𝑜 bday y
59 58 adantrr y No 0 s s y y s 1 𝑜 bday y
60 34 59 sylbi y x No | 0 s s x x s 1 𝑜 bday y
61 29 60 mprgbir 1 𝑜 bday x No | 0 s s x x s
62 scutbday 0 s s bday 0 s | s = bday x No | 0 s s x x s
63 7 62 ax-mp bday 0 s | s = bday x No | 0 s s x x s
64 61 63 sseqtrri 1 𝑜 bday 0 s | s
65 26 64 eqssi bday 0 s | s = 1 𝑜
66 2 65 eqtri bday 1 s = 1 𝑜